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valuation of quantitative image analysis criteria for the 
igh-resolution microendoscopic detection of 
eoplasia in Barrett’s esophagus 

imothy J. Muldoon Abstract. Early detection of neoplasia in patients with Barrett’s 
adhi Thekkek esophagus is essential to improve outcomes. The aim of this ex vivo 
arren Roblyer study was to evaluate the ability of high-resolution microendoscopic 

ice University imaging and quantitative image analysis to identify neoplastic lesions 
epartment of Bioengineering in patients with Barrett’s esophagus. Nine patients with pathologically 
100 Main Street confrmed Barrett’s esophagus underwent endoscopic examination ouston, Texas 77005 

with biopsies or endoscopic mucosal resection. Resected fresh tissue 
was imaged with fber bundle microendoscopy; images were ana-

ipen Maru lyzed by visual interpretation or by quantitative image analysis to pre-
he University of Texas dict whether the imaged sites were non-neoplastic or neoplastic. The 
.D. Anderson Cancer Center best performing pair of quantitative features were chosen based on 
epartment of Pathology their ability to correctly classify the data into the two groups. Predic-515 Holcombe Boulevard 

tions were compared to the gold standard of histopathology. Subjec-ouston, Texas 77030 
tive analysis of the images by expert clinicians achieved average sen-
sitivity and specifcity of 87% and 61%, respectively. The best 

oam Harpaz performing quantitative classifcation algorithm relied on two image 
ount Sinai Medical Center textural features and achieved a sensitivity and specifcity of 87% and 
ivision of Pathology 85%, respectively. This ex vivo pilot trial demonstrates that quantita-
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tivity and specifcity when compared to histopathology and to 
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 Introduction 

he incidence of esophageal adenocarcinoma �EAC� has in-
1reased sixfold in the United States over the past 30 years. 

denocarcinoma of the distal esophagus has one of the poor-
st overall five-year survival rates of all cancers, with reported
ve-year survival rates of 14% and 0% for stage III and stage
V disease, respectively.2 Surgical treatment for locally ad-
anced EAC carries significant morbidity and mortality. Early
etection of disease is vital to improve long-term survival
ates, facilitate endoscopic therapy, and improve the overall
uality of life of affected patients. 

The current method of surveillance of Barrett’s esophagus
nvolves endoscopic white-light examination with four-

ddress all correspondence to: Rebecca Richards-Kortum, Rice University, De-
artment of Bioengineering, 6100 Main Street, Houston, Texas 77005. Tel: 713-
48-5869; Fax: 713-348-5877; E-mail: rkortum@rice.edu 
ournal of Biomedical Optics 026027-
quadrant biopsy, a procedure that has been shown to miss 
neoplasia in up to 57% of cases.3–6 Because of these limita-
tions, high-resolution technologies that can serve as an ad-
junct to white-light endoscopy have been proposed to increase 
diagnostic accuracy for the detection of high-grade dysplasia 
�HGD� or early cancer. These technologies include confocal 
microendoscopy and endocytoscopy. Of these, confocal en-
domicroscopy has shown the highest accuracy to date based 
on single-center evaluation with an experienced microendos-
copist interpreting the in vivo images.7 Unfortunately, such 
real-time interpretation requires considerable training and is 
subject to intraobserver variability.8–10 For broader clinical ap-
plication, particularly outside a university setting, the applica-
tion of image-analysis software using well-defined image 
classification algorithms has the potential to reduce subjectiv-
ity and improve diagnostic accuracy. 
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Quantitative image analysis, based on computational
nalysis of textural features within a digital image, offers an
bjective means to improve the consistency and speed of di-
gnosis at the point of care. Image texture features, based on
he spatial distribution and organization of pixels, can be com-
uted rapidly. Textural features, such as entropy, frequency
ontent, and pixel pair correlation values, may not be apparent
o a human observer, but they relate important information
bout the structure within an image. Images from a dysplastic
egion, for example, would be more likely to have a lower
ixel pair correlation value and a higher entropy value be-
ause of the decreasing orderly arrangement of cells �and
herefore corresponding image pixels� when compared to nor-
al glandular tissues. Since there are a large number of easily

alculated textural features, searching many features at once
an identify a single feature or pair of features that enable
igh-fidelity classification of the image data. By limiting the
umber of features calculated at the time of image acquisition,
apid diagnostics are possible at the point of care. With the
ncreasing availability and power of inexpensive and portable
omputers, on-site quantitative analysis and classification
echniques could be applied to a wide array of high-resolution
maging schemes. 

To extend the benefits of high-resolution imaging to a
roader patient population, and to create a more objective
eans of evaluating optical biopsy data, we developed a

uantitative image analysis and classification algorithm to
nalyze data from a high-resolution microendoscope �HRME�
evice. The HRME is capable of producing images of the
sophageal mucosa at subcellular resolution without the need
or expensive optics or scanning electronics. Indeed, the total
ost of the HRME components is approximately $2500. In a
revious proof-of-principle study, we demonstrated that im-
ges acquired with the HRME can distinguish neoplastic
high-grade dysplasia �HGD� or cancer� from non-neoplastic
intestinal metaplasia or low-grade dysplasia �LGD��, Bar-
ett’s mucosa based on qualitative image assessment.11 

The goal of this study was to develop quantitative image
nalysis criteria for HRME images to discriminate neoplastic
rom non-neoplastic esophageal mucosa. We compared the
ccuracy of discrimination achieved using visual interpreta-
ion by experienced pathologists or gastroenterologists trained
n the analysis of the optical images to that achieved with
omputer-aided classification algorithms based on quantitative
nalysis of image textural features. Histopathology was con-
idered the gold standard. 

 Methods 
.1 Patients 

atients over 18 years of age with a previous diagnosis of
arrett’s esophagus were asked to participate in the study.

nformed consent was obtained from all study participants,
nd the study was reviewed and approved by the Institutional
eview Boards at the University of Texas M. D. Anderson
ancer Center, Rice University, and The Mount Sinai Medical
enter. Subjects underwent conventional endoscopy with

tandard four-quadrant biopsy surveillance; a subset of pa-
ients �those with endoscopically suspected neoplasia� under-
ent endoscopic mucosal resection �EMR�. Following resec-
ournal of Biomedical Optics 026027-
tion, biopsies or EMR specimens were imaged with the 
HRME device. 

A solution of proflavine �Sigma-Aldrich� dissolved in wa-
ter at a concentration of 0.01% �w/v� was prepared prior to 
performing imaging. The contrast agent solution was directly 
applied to the epithelial surface of the resected tissue with a 
dropper, and imaging with the HRME device was performed 
immediately. The application of proflavine does not discolor 
the tissue surface, and is not detectable in tissue slides pre-
pared using standard histopathology processing and hematox-
lin and eosin �H&E� staining �Fig. 1�. 

After imaging, the tissue was returned for standard histo-
pathology processing, and slides were later reviewed by a 
single, expert gastrointestinal pathologist �D.M.� blinded to 
the results of the HRME imaging. Each measurement site 
used in this study was correlated to a histopathology-
confirmed diagnostic category: Barrett’s intestinal metaplasia 
�IM�, low-grade dysplasia �LGD�, high-grade dysplasia 
�HGD�, or esophageal adenocarcinoma �EAC�. 

2.2 Imaging System 

The high-resolution microendoscope �HRME� device has 
been previously described in detail.12 Briefly, images are ac-
quired with this device by placing the tip of the fiber bundle 
image guide into direct contact with the epithelial surface of 
the tissue. Excitation light from a blue LED with a center 
wavelength of 455 nm is delivered through the fiber bundle. 
The fluorescence emission from the topically applied fluores-
cent contrast agent, proflavine, is collected through the fiber 
bundle and focused onto a CCD camera, and a digital image is 
stored for future processing and analysis. The HRME system 
has a circular field of view with a diameter of 750 microns; 
the lateral spatial resolution of the system is approximately 
4 microns, and images are displayed at 4 frames per second. 

2.3 HRME Image Analysis 

Digital HRME images were reviewed to determine whether 
the endoscope tip was in contact with the tissue surface or 
whether the probe tip moved during image acquisition. Im-
ages showing such artifacts were discarded and not used in 
subsequent analyses. 

Digital HRME images were reviewed by two expert pa-
thologists and two expert gastroenterologists, already familiar 
with microendoscopy. Prior to reviewing the entire set of im-
ages, reviewers were shown a subset of 16 images, labeled 
with the corresponding histopathologic diagnosis of IM, 
LGD, HGD, and EAC. This training set included 8 images 
collected from sites with a diagnosis of IM or LGD �non-
neoplastic�, and 8 images from sites diagnosed with neoplasia 
�HGD or EAC�. Reviewers were then shown the complete set 
of images in a randomized order and asked to score each 
image as either “neoplastic” or “non-neoplastic,” where “non-
neoplastic” corresponds to a pathologic diagnosis of IM or 
LGD, and “neoplastic” corresponds to HGD or EAC. Results 
of visual image interpretation were compared to the 
histopathology-confirmed diagnosis at each site; sensitivity 
and specificity were calculated for each observer. 
�2 March/April 2010 Vol. 15�2� 
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ig. 1 Illustration of HRME images �top row� compared to H&E im
etaplasia and low-grade dysplasia �LGD�, high-grade dysplasia �HGD

cale; scale bar represents 100 �m. 

.4 Image Classification Algorithm 

n addition to subjective image interpretation, we explored the
iagnostic ability of quantitative image analysis. For each im-
ge, 59 distinct features were computed �Table 1�. First-order
tatistical features �variance, entropy, etc.� were calculated di-
ectly from the raw pixel values. A gray-level co-occurrence
atrix �GLCM� with pixel offsets ranging from 1 to 10 was

sed to calculate additional textural feature groups �correla-
ion, contrast, homogeneity, and energy�.13 Each GLCM fea-
ure group contained 10 distinct features, corresponding to
ach pixel offset. To detect nuclear features, an extended re-
ional maximum transform was applied to the image. Voronoi
essellations were calculated from the centroids of the nuclear
eatures to calculate internuclear distances.14 A Fourier trans-
orm was applied to each image to calculate the power spec-
rum; this was divided into 10 partitions to represent the fre-
uency components of the image. The contribution of each
artition is represented as a fraction of the total power

15,16pectrum.
A diagnostic algorithm was developed to classify each im-

ge as non-neoplastic or neoplastic using these image features
s input. Histopathology again was used as the gold standard;
ites with a pathologic diagnosis of Barrett’s metaplasia or
arrett’s metaplasia with low-grade dysplasia were consid-
red to be non-neoplastic, while sites with a pathologic diag-
osis of Barrett’s metaplasia with high-grade dysplasia or
sophageal adenocarcinoma were considered to be neoplastic.
he classifier was based on two-class, linear discriminant
nalysis; a sequential forward feature-selection algorithm ini-
ially was used to select the best performing subset of up to 10
mage features to classify the data. Initially, the best perform-
ng single feature was identified, and then subsequent features
ere selected that gave maximum performance when com-
ined with previously selected features. The algorithm, was
ournal of Biomedical Optics 026027-
bottom row�. From left to right, diagnostic categories are: Barrett’s 
 esophageal adenocarcinoma �EAC�. All images are sized to the same 

developed using fivefold cross-validation; each measurement 
site was initially randomly assigned to one of five groups. 
Four-fifths of the data were then used to train the linear clas-
sification algorithm, and the remaining one-fifth of the data 
were used to test the algorithm. This cycle was repeated four-
additional times so that the algorithm was tested using data 
from each site. Performance was monitored by calculating the 
area under the curve �AUC� of the classifier. 

Alternatively, a three-class diagnostic algorithm was devel-
oped to classify each image as: �1� Barrett’s intestinal meta-
plasia or Barrett’s low-grade dysplasia, �2� Barrett’s high-
grade dysplasia, and �3� adenocarcinoma. A categorical tree-
based classifier was used. This algorithm was allowed to 
choose inputs from the entire feature set.17,18 The tree-based 
classifier was pruned to three terminal nodes to avoid over-
training; two features were selected to perform this step. The 
predicted classification results from each classifier were then 
compared to the actual histopathology for each site. 

3 Results 
3.1 Patients and Measurement Sites 

Nine subjects were enrolled in the study. Endoscopic mucosal 
resection �EMR� specimens were obtained from six of these 
patients, and biopsy specimens were obtained from the re-
maining three patients. Images were obtained from 139 
unique sites; images from 128 of these sites passed the quality 
control �QC� review and were used for further analysis �Table 
2�. Figure 1 shows representative HRME images �top row� 
and corresponding histopathology �bottom row� of 
metaplasia/LGD, HGD, and EAC, respectively. All images 
are at the same scale for comparison. Large, well-organized 
glands can be seen in the metaplasia/LGD Barrett’s case, 
while smaller glands with disrupted borders are visible in the 
ages �
�, and
�3 March/April 2010 Vol. 15�2� 
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Fig. 2 �a� Box and whiskers plot showing the GLCM correlation by 
diagnostic category. The central line in each box represents the mean, 
while the top and bottom edges represent the 25th and 75th percen-
tile. The notches in the boxes represent a 95% confdence interval for 
the mean. �b� Features values for top two performing features by mea-
surement site. Non-neoplastic sites are plotted as squares; neoplastic 
sites are plotted as crosses. The decision line is shown. 

HGD case. The image of EAC shows extreme disruption of 
glandular organization and crowded, abnormal cells. 

3.2 Subjective Image Interpretation 

Subjective scoring of the images by two expert gastroenter-
ologists achieved an average sensitivity of 87% and an aver-
age specificity of 53% for neoplasia, with a kappa statistic of 
0.25, indicating fair agreement. The two expert pathologists 
achieved an average sensitivity of 87% and an average speci-
ficity of 68% for neoplasia, with a kappa statistic of 0.27, 
indicating fair agreement. The combined average performance 
of all four reviewers was 87% sensitivity and 61% specificity. 

3.3 Quantitative Classification Algorithm 

Quantitative image features were ranked according to their 
diagnostic ability. Image features in Table 1 are listed in order 
of descending area under the receiver operating characteristic 
�ROC� curve for the single-feature, two-class linear discrimi-
nant analysis classifier. The single best performing feature 
was found to be the GLCM correlation with a pixel offset of 
10. Figure 2�a� depicts a box plot illustrating the average 
GLCM correlation values for samples diagnosed histologi-
cally as non-neoplastic samples �IM or LGD�, HGD, and 
able 1 Quantitative image features. Image features are listed in de-
reasing order of diagnostic performance when used as a single input
eature for linear discriminant analysis. 

eature Explanation 

orrelation �10 features� Pixel neighbor correlation over the 
entire image 

tandard deviation Standard deviation of grayscale values 

ariance Variance of pixel grayscale values 

nergy �10 features� Sum of squares in gray-level 
co-occurrence matrix �GLCM� 

requency �10 features� Frequency distribution of pixel values 

ntropy Statistical measurement of randomness 
of grayscale values 

ean nuclear separation Mean nuclear separation as calculated 
istance by Voronoi tessellation 

td. dev. nuclear Standard deviation of nuclear 
eparation distance separation as calculated by Voronoi 

tessellation 

uclei per unit area Number of nuclei detected divided by 
area of region of interest 

urtosis Measure of the flatness of the pixel 
value distributions 

kewness Measure of the symmetry of the pixel 
value distribution 

ontrast �10 features� Measure of pixel intensity compared to 
its neighbors over the entire image 

Homogeneity �10 features� Closeness of the distribution of the 
GLCM elements to the diagonal 

Mean minimum nuclear Average minimum nuclear separation as
separation distance calculated by Voronoi tessellation 
Table 2 Number of sites imaged by histologic diagnosis. 

Diagnostic category 
Histologic 
diagnosis 

Number of 
sites imaged 

Non-neoplastic IM 6 

LGD 53 

Neoplastic HGD 26 

EAC 43 

Total 128 
�4 March/April 2010 Vol. 15�2� 
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ig. 3 Classifcation performance. �a� Calculated classifcation perfor-
ance versus number of features used; note the plateau at two fea-

ures. �b� Scatter plot of calculated posterior probability generated by
 two-feature linear discriminant analysis �LDA� algorithm. The deci-
ion line is shown at 0.24. �c� ROC curve of calculated classifcation
erformance using the two-class, two-feature LDA. The Q-point is
hown, corresponding to a sensitivity of 87% and a specifcity of 85%.

AC. On average, the GLCM correlation level is lower in
ites with HGD or EAC when compared to non-neoplastic
ites. 

The top performing combination of two features was found
o be the GLCM correlation value at an offset of 10, and the
requency contribution at an offset of 6; this is the relative
ontribution to the total power spectrum coming from the fre-
uencies over the sixth partition from the Fourier transform.
igure 2�b� shows a scatter plot of these two features for each
f the 128 sites in the data set. Non-neoplastic samples, with
 pathologic diagnosis of Barrett’s with or without LGD, are
hown as squares; neoplastic samples, with a pathologic diag-
osis of HGD or EAC, are shown as crosses. The decision
ine associated with the two-class linear discriminant classifier
s shown as a straight line on the plot. 

Figure 3�a� shows the area under the curve as a function of
ournal of Biomedical Optics 026027-
Table 3 Summary of the performance of the tree-based three-class 
classifer. 

IM/LGD by 
histology 

HGD by 
histology 

EAC by 
histology 

IM/LGD predicted 79.3% 7.4% 2.3% 

HGD predicted 8.6% 70.4% 4.7% 

EAC predicted 12.1% 22.2% 93.0% 

the number of image features selected in the linear discrimi-
nant algorithm. The AUC increases from one to two features 
and then reaches a plateau. Figure 3�b� shows a scatter plot of 
the posterior probability that each site is neoplastic �HGD or 
EAC� as calculated by the linear classifier using two input 
features; samples are grouped by histopathologic diagnosis. 
Figure 3�c� shows the ROC curve for the linear discriminant 
classifier based on these two features. The AUC is 0.92, and 
the sensitivity and specificity at the Q-point are 87% and 
85%, respectively. 

A tree-based classifier was developed to classify samples 
into three groups �non-neoplastic, HGD, and cancer� using 
automated feature selection. The features chosen by this algo-
rithm were again GLCM correlation and frequency contribu-
tion. Table 3 summarizes the performance of the three-class 
algorithm; vertical columns add to 100%, to indicate the pro-
portion of predicted measurements that were placed into the 
correct category. The tree-based classifier performed very 
well in distinguishing the non-neoplastic cases �79.3%� and 
when predicting HGD and EAC �70.4% and 90.3%, respec-
tively�. 

4 Discussion 
In this study, we demonstrated the use of a simple, low-cost, 
portable, high-resolution microendoscopy system to distin-
guish between clinically significant grade of Barrett’s esopha-
gus using subjective visual interpretation and objective quan-
titative image analysis and classification. Subjective analysis 
of the images by expert gastroenterologists achieved average 
sensitivity and specificity of 87% and 53%, respectively, 
while expert pathologists achieved average sensitivity and 
specificity of 87% and 68%, respectively. Image classification 
algorithms were created by analysis of key textural features 
within the images, the most important features being fre-
quency content, as calculated by a discrete fast Fourier trans-
form, and pixel pair correlation, as calculated by a gray-level 
co-occurrence matrix. The objective classification algorithm 
was able to distinguish between neoplastic and non-neoplastic 
cases with a sensitivity of 87% and a specificity of 85%. 

The results of this pilot study suggest that this technique 
may be useful to regions without highly trained expert per-
sonnel or extensive biomedical infrastructure. The low cost of 
the device �roughly US $2,500� and the wide availability of 
low-cost computers may facilitate the distribution of the 
HRME and the quantitative image analysis and classification 
algorithm to regions beyond tertiary care centers and univer-
sity hospitals.11 
�5 March/April 2010 Vol. 15�2� 
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Subjective scoring of the HRME images identified that sig-
ificant intra-observer variability exists. While the overall ac-
uracy is comparable to the results achieved by the computa-
ional diagnostic algorithm presented here, the subjective
nterpretation result demonstrates that even among highly
rained endoscopists �familiar with microendoscopy� and ex-
ert gastrointestinal �GI� pathologists, disagreement can oc-
ur. Unfamiliarity with the image modality presented here by
he HRME may be a confounding factor, as can bias from
xtensive experience with more conventional modalities, such
s histopathology. The objective algorithm presented here
ay be able to aid clinicians in making diagnostic decisions at

he point of care, while reducing intra-observer variability. 
As with any small pilot study, a larger sample size will be

equired to optimize and evaluate the performance of the clas-
ification algorithm presented here. Results with the relatively
mall number of patients �9� and measurement sites �128�, as
ell as the distribution of diagnoses measured �Table 2� may
ot reflect the HRME probe’s performance in a screening set-
ing. The non-neoplastic sites examined here included both
ntestinal metaplasia and low-grade dysplasia; however, the
umber of sites with low-grade dysplasia �53� was much
reater than the number with intestinal metaplasia �6�. While
his is expected in the high-risk population participating in
his study, it may induce bias in the accuracy rates reported in
his feasibility study. In a normal screening population, the
roportion of non-neoplastic sites with intestinal metaplasia
nly is expected to be higher than that encountered here.19 We 
re evaluating the performance of the algorithms developed
ere in a larger number of subjects in a normal screening
opulation of average risk. A separate, independent validation
ata set is the most robust method to verify the performance
f the HRME device and classification algorithm. However, in
he absence of an independent validation set, cross-validation
s recognized as a helpful tool to guard against overtraining
hen estimating the performance of a classifier.20 

An additional limitation of this trial is the HRME probe’s
nability to image subsurface regions. While the incidence of
igh-risk submucosal or occult EAC is still subject to contro-
ersy, inspection of subsurface regions remains an important
onsideration to clinicians.21 The current HRME device yields
mages by placing the tip of the device into direct contact with
issue, limiting its image acquisition to the superficial epithe-
ium. However, the fiber-optic probe is small enough to pass
hrough the lumen of a 16-gauge needle; the needle could be
sed to physically penetrate into deeper layers of the epithe-
ium, allowing the fiber bundle to image these areas. This
echnique has been successfully demonstrated in a mouse

odel.12 

The quantitative algorithm described in this paper could be
pplied to any high-resolution imaging system capable of
igital image acquisition. In particular, confocal imaging,
hich has shown much promise as an in situ high-resolution

maging device, could benefit from objective image analysis.
hile the same features that were demonstrated to be diag-

ostic for this study �frequency content and pixel pair corre-
ation� may not be applicable to all high-resolution imaging
ystems, a similar textural feature search could employed. The
ew algorithm may then be used to augment physician diag-
osis during a procedure. 
ournal of Biomedical Optics 026027-
High-resolution imaging of the gastrointestinal epithelium 
offers clinicians a means to inspect the histologic features of 
suspicious lesions and post-resection margins in real time dur-
ing an endoscopic procedure. Such information can be used to 
guide the selection of sites for biopsy to improve the diagnos-
tic yield during screening endoscopy.22 Traditional confocal 
laser endoscopy �CLE� typically requires the endoscopist to 
interpret images during the procedure. This subjective inter-
pretation is likely highly dependent on clinician training and 
is variable by its subjective nature. A more objective means of 
image interpretation may help guide the endoscopist’s deci-
sion as to the classification of a lesion. Such objective image 
analysis has been applied in other high-resolution imaging 
studies; Becker et al. demonstrated that computer-aided diag-
nosis of mucosal pit patterns but a fiber bundle confocal sys-
tem has been shown to be effective in distinguishing neoplas-
tic from non-neoplastic Barrett’s tissue.23 

While the small field of view �750 microns� of the HRME 
device makes surveillance of the entire esophageal mucosa 
impractical, the HRME could be used as a tool to investigate 
suspicious sites during an endoscopic procedure. Standard 
white-light endoscopy has a field of view of several centime-
ters and can be used to identify regions of interest that require 
high-resolution interrogation with the HRME probe. In addi-
tion, other wide-field imaging techniques are becoming avail-
able, such as narrow-band imaging �NBI� and autofluores-
cence �AF� imaging, which could be useful in uncovering 
occult premalignant conditions.24 Such techniques are suscep-
tible to confounding factors, such as inflammation, which can 
be misclassified as dysplasia. High-resolution imaging of 
these regions may be able to correctly differentiate benign 
inflammatory processes from precancerous lesions, resulting 
in improved biopsy localization and higher diagnostic yield. 

The image processing techniques presented in this study 
can uncover features in images that are clinically important, 
but that may not be apparently to the clinician performing the 
procedure. In addition, quantitative image analysis and classi-
fication techniques require relatively minimal computing 
time, which is useful in a busy clinical setting. This feasibility 
study demonstrates that images acquired with a low-cost, 
high-resolution microendoscope can provide objective dis-
crimination of neoplastic and non-neoplastic sites in the 
esophagus with good accuracy relative to histology. Prospec-
tive evaluation of this approach is warranted to determine the 
clinical performance in a low-risk screening setting. 
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