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Abstract. We developed an automated frame selection algorithm for high-resolution microendoscopy video 
sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short 
video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated 
by quantitative comparison of diagnostically relevant image features and diagnostic classification results 
obtained using automated frame selection versus manual frame selection. A data set consisting of video sequen-
ces collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the 
receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral 
sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation 
of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of 
biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be 
limited infrastructure and personnel for standard histologic analysis. © The Authors. Published by SPIE under a Creative 
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1 Introduction 
It is estimated that global cancer incidence and mortality 
will approximately double during the next two decades.1 The 
increase is particularly notable in low-income and middle-
income countries, where population growth, aging, and reduced 
mortality from infectious diseases have led to a steadily increas-
ing cancer burden.2 Low-income countries often lack effective 
cancer screening and prevention services. In these settings, con-
ventional diagnostic methods, such as biopsy and histopathol-
ogy, are limited by the lack of laboratory infrastructure, the lack 
of trained personnel,3 and the difficulty of ensuring patient fol-
low-up when test results are not immediately available at the 
point-of-care. As a result, most cancer patients in low-income 
countries are diagnosed with advanced-stage disease. There is 
a widespread need for rapid, effective methods for early detec-
tion of cancer at the point-of-care in low-resource settings. 

Optical imaging technologies have the potential to aid in 
early detection of cancer in real time at the point-of-care. 
High-resolution fiber-optic microendoscopy is an imaging tech-
nology that has emerged as a cost-effective and noninvasive 
method for point-of-care diagnosis of precancer and cancer in 
organ sites including the oral cavity and esophagus.4 This 
method enables direct visualization of neoplastic indicators 
such as elevated nuclear-to-cytoplasmic area ratio (N/C ratio), 
nuclear crowding, and nuclear pleomorphism with similar 

resolution to confocal microendoscopy but with significantly 
reduced system complexity and cost.5 These indicators are 
conventionally only observed during cytologic or histologic 
analysis following an invasive biopsy. Recent clinical studies of 
high-resolution fiber-optic microendoscopy have demonstrated 
that this method can be used to detect neoplastic lesions in 
patients with oral squamous cell carcinoma6 and Barrett’s 
esophagus.7 

In high-resolution microendoscopy a coherent fiber optic 
bundle is placed in contact with the tissue, providing a real-
time video display showing the size, shape, and distribution 
of cell nuclei in the epithelium. The field of view is typically 
0.5 to 1.0 mm in diameter with a lateral resolution of about 
4 μm. The images may be subjectively interpreted by trained 
personnel or they may be quantitatively analyzed using 
image analysis algorithms to diagnostically assess relevant 
parameters, such as N/C ratio and nuclear size. In vivo clinical 
data are typically collected in the form of short video sequences, 
to ensure that a high-quality individual frame free of motion 
artifact can subsequently be selected for quantitative image 
analysis.8 The selection of a representative and informative 
key frame for quantitative image analysis is typically performed 
manually at some time after the imaging session has been com-
pleted, based on a subjective evaluation of image quality and 
motion artifact by an observer blinded to clinical impression 
and pathology diagnosis. An algorithm that automates the 
frame selection procedure is needed to enable real-time quanti-
tative image analysis for high-resolution microendoscopy at 
the point-of-care. *Address all correspondence to: Rebecca Richards-Kortum, E-mail: rkortum@ 

rice.edu 
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Automated selection of key frames is important in other 
types of medical imaging as well. Automated frame selection 
algorithms and procedures have been reported for laparoscopic 
videos,9 colonoscopy videos,10 capsule endoscopy videos,11–15 

cystoscopy videos,16 angiography videos,17 bronchoscopic vid-
eos,18 larynx endoscopy videos,19 and retinal videos.20 These 
algorithms are generally designed to remove redundant video 
frames and/or identify key frames in order to spare clinicians 
the need to spend time viewing and selecting individual images, 
thus enhancing diagnostic efficiency. 

However, frame selection algorithms previously reported 
in the literature cannot easily be applied to high-resolution 
microendoscopy because they are matched to specific features 
seen in a particular class of videos, as in the case of retinal 
imaging20 in which key frames are identified through auto-
mated recognition of vessel structure. Also, most key frame 
selection algorithms are intended to summarize the video or 
automatically detect boundaries between shots in order to 
structure the video.21 Thus, key frames are identified whenever 
a significant content change between a frame and its preceding 
frame can be observed.22,23 These algorithms are not well 
suited to high-resolution microendoscopy videos, which 
contain features different from those of most other imaging 
modalities. High-resolution microendoscopy videos typically 
show bright nuclei on a dark background, with the nuclear 
size, shape, and distribution related to the disease state of 
the tissue. Some frames in each video are expected to contain 
motion artifact because the field of view is small and the micro-
endoscope is manually held in place by the clinician or inserted 
through the working channel of an endoscope during in vivo 
imaging. 

For these reasons, a key frame selection algorithm 
specific for high-resolution microendoscopy is required. 
Here, we present an algorithm that automates the frame 
selection procedure, which is an important step that is needed 
to enable real-time quantitative image analysis at the point-
of-care. The goal of the present study was to develop 
an algorithm that automatically selects a high-quality, repre-
sentative frame free of motion artifact from each video 
sequence. 

2 Automated Frame Selection Algorithm 
The automated frame selection algorithm aims to select a frame 
that is free of motion artifact, that has sufficient intensity for 
meaningful analysis but is not saturated, and that is representa-
tive. Motion artifact can be minimized by identifying segments 
within the video sequence with minimal frame-to-frame varia-
tion, but this method alone cannot account for image quality, 
pixel saturation, and low-light levels. Images of optimal quality 
can be selected by calculating the entropy of the image and iden-
tifying feature points in the image, but these methods alone can 
result in a bias against images that have less distinctly represen-
tative features such as neoplastic tissue (in which the nuclei have 
a more crowded and disordered appearance) or keratinized tis-
sue (in which nuclei are not visible). We, therefore, developed 
a hybrid frame selection algorithm that uses a combination of 
these methods. Part 1 of the algorithm identifies a subset of 
images within the video sequence with minimal frame-to-
frame variation. Part 2 selects images within that subset which 
meet certain criteria related to the entropy of the image. Part 3 
uses feature point analysis to select the final frame. Each step is 
described in further detail below. 

3 Part 1: Frame Subtraction 
Simple subtraction of images can be used to characterize frame-
to-frame variation. If the intensity difference between two suc-
cessive images is low, the two images are similar to each other. 
The difference between two successive images can be calculated 
by Eqs. (1) and (2): 

Idifference k ¼ ½Ikþ1 − Ik 
2; (1) 

k ¼ 1;2; 3; : : : ; ðNumber of framesÞ − 1: (2) 

The steps to select frames which are least affected by motion 
artifact are described below. 

Step 1: Let k be the number of images in the video sequence. 
Calculate (k − 1) difference images using Eq. (1). 

Step 2: Calculate the summation of pixel values in each 
difference image. 

Table 1 Composition of the oral data set and pathology diagnosis. 

# of patients # of sites 

Histopathologic diagnosis 

Non-neoplastic Neoplastic 

Normal Mild dysplasia Moderate dysplasia Severe dysplasia Cancer 

30 100 45 17 14 6 18 

Table 2 Composition of the esophageal data set and pathology diagnosis. 

# of patients # of sites 

Histopathologic diagnosis 

Non-neoplastic Neoplastic 

Normal Inflammation Low-grade dysplasia High-grade dysplasia Cancer 

78 167 58 50 40 15 4 
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Step 3: Identify the r1 × k difference images that have the 
lowest summation of pixel values. The variable r1 is an 
arbitrarily selected value that sets the fraction of frames 
to be retained in this part of the algorithm ð0 ≤ r1 ≤ 1Þ. 
We set r1 ¼ 0.5, based on our observation that in this 
data set about half of the frames in a typical video 
sequence are free of motion artifact. Therefore, 50% of 
the frames are retained and 50% are discarded in this 
part of the algorithm. Note that the value of r1 × k is 
rounded to the nearest integer. 

Step 4: Identify the original images corresponding to the 
difference images selected in Step 3. For each difference 
image Idifference k selected in Step 3, the single original 
image Ik is retained. Other images are discarded. 

4 Part 2: Entropy 
Entropy is a statistical feature which represents the diversity of 
intensity values in an image; it is a measure of information 

content.24,25 The entropy of an image can be determined from 
a histogram of the gray level values represented in the image. 
The entropy E is defined as Eq. (3), where M is the number 
of gray levels and pj is the probability associated with gray 
level j. 

E ¼ − 
XM−1 

j¼0 

pj logðpjÞ: (3) 

Images containing pixels with similar intensity values (low 
pixel-to-pixel contrast) have low entropy values, whereas images 
with high pixel-to-pixel contrast have high entropy values. 
Entropy can, therefore, be used to help evaluate whether an 
image is properly focused, since an in-focus image tends to 
contain higher pixel-to-pixel contrast and higher information 
content than an out-of-focus image.26 

The steps to select frames which are minimally affected by 
motion artifact and have sufficient entropy are described below. 

Fig. 1 Examples of high-resolution microendoscopy frames selected from video sequences in the oral 
data set. Top row: manually selected frames from (a) non-neoplastic oral site (Video 1) and (b) neoplastic 
oral site (Video 2). Bottom row: automatically selected frames from (c) non-neoplastic oral site (Video 1) 
and (d) neoplastic oral site (Video 2). (Video 1: QuickTime, 5.2 MB [URL: http://dx.doi.org/10.1117/1.JBO 
.20.4.046014.1]. Video 2: QuickTime, 5.9 MB [URL: http://dx.doi.org/10.1117/1.JBO.20.4.046014.2]. 
Scale bar ¼ 100 μm). 
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Step 1: Calculate the entropy of images previously selected 
in Part 1 using Eq. (3). 

Step 2: Identify the r2 × ðr1 × kÞ images which have the 
highest entropy values. The variable r2 is an arbitrarily 
selected value that sets the fraction of frames to be 
retained in this part of the algorithm ð0 ≤ r2 ≤ 1Þ. 
We set r2 ¼ 0.5 in this analysis; therefore, 50% of the 
frames are retained and 50% are discarded in this part of 
the algorithm. Note that the value of r2 × ðr1 × kÞ is 
rounded to the nearest integer. 

5 Part 3: Feature Point Detection 
The third part of the algorithm is based on the detection of points 
of interest, called feature points, within the image. We adapted 
a feature-based registration technique known as Speeded Up 
Robust Features (SURF) for this purpose.27 SURF is widely 

used in computer vision technologies. The frame selection algo-
rithm utilizes feature points calculated by the SURF algorithm 
on the assumption that a high-quality representative frame (in 
focus, no motion blur) possesses, in general, a larger number of 
feature points than other frames that are lower in quality or less 
suitable to represent the site. We also tested this assumption 
experimentally (see Sec. 8). 

The SURF algorithm is described in detail in the literature.27 

It is a scale- and rotation-invariant detector and descriptor of 
feature points in an image. Its important characteristics are 
speed, robustness, accuracy, and performance repeatability. In 
our algorithm, we utilized the feature point detection component 
of the SURF algorithm. 

The steps to select a final single frame to represent the video 
sequence are described below. 

Step 1: Calculate the feature points of images previously 
selected in Part 2. 

Fig. 2 Examples of high-resolution microendoscopy frames selected from the esophageal data set. Top 
row: Manually selected frames from (a) non-neoplastic esophageal site (Video 3) and (b) neoplastic 
esophageal site (Video 4). Bottom row: Automatically selected frames from (c) non-neoplastic esopha-
geal site (Video 3) and (d) neoplastic esophageal site (Video 4). (Video 3: QuickTime, 1.5 MB [URL: http:// 
dx.doi.org/10.1117/1.JBO.20.4.046014.3]. Video 4: QuickTime, 1.6 MB [URL: http://dx.doi.org/10.1117/ 
1.JBO.20.4.046014.4]. Scale bar ¼ 100 μm). 
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Step 2: Identify the frame which has the largest number of 
feature points. This single frame is used as the represen-
tative frame for the video sequence. 

6 Experiments 
The automated frame selection algorithm was implemented 
using MATLAB software (MathWorks, Inc., Natick, 
Massachusetts). The algorithm was applied to select a single 
representative frame from each video in a series of videos 
acquired in two clinical studies. Results of the automated 
process were compared to manual frame selection by a trained 
observer. The purpose of the evaluation was to investigate 
the similarity of manually and automatically selected frames 
from the video sequences in the data set. We compared the 
values of features extracted from frames selected manually and 

automatically and compared the performance of diagnostic clas-
sification algorithms based on these features. 

6.1 Patient Data 

The performance of the automated frame selection algorithm 
was evaluated using two high-resolution microendoscopy 
data sets that have been previously analyzed and reported 
using manual frame selection.8,28 In these studies, a representa-
tive frame from a given video sequence was selected by an 
observer blinded to clinical impression and pathologic diagno-
sis, based on subjective evaluation of image quality and the pres-
ence/absence of motion artifact. The first data set consists of 
video sequences collected in vivo from 100 oral sites in 30 
patients under an institutional review board (IRB)-approved 
protocol at the University of Texas M. D. Anderson Cancer 
Center.28 The second data set consists of video sequences col-
lected in vivo from 167 esophageal sites in 78 patients under an 
IRB-approved protocol at the Cancer Institute at the Chinese 
Academy of Medical Sciences.8 Within each data set, the 
image features and classification results obtained using the 
new automated frame selection algorithm were compared to 
the image features and classification results obtained previously 
using manual frame selection. 

The composition of the oral data set is summarized in 
Table 1. Of the 100 oral sites, 45 were non-neoplastic and 55 
were neoplastic by histopathology (the gold standard). Mild 
dysplasia was grouped in the neoplastic category in accordance 
with the convention used in the original analysis.28 

The composition of the esophageal data set is summarized in 
Table 2. Of the 167 esophageal sites, 148 were non-neoplastic 
and 19 were neoplastic by histopathology (the gold standard). 
Low-grade dysplasia was grouped in the non-neoplastic cat-
egory in accordance with the convention used in the original 
analysis.8 

6.2 Quantitative Parameter Analysis 

In order to determine the similarity between automatically 
selected frames and manually selected frames, diagnostically 
relevant quantitative parameters were calculated from each 
set of images. In the oral data set, the N/C ratio was found 
to be the most diagnostically relevant parameter in the original 
analysis.28 In the esophageal data set, nuclear size (mean nuclear 
area) was found to be the most diagnostically relevant parameter 
in the original analysis.8 

N/C ratio and mean nuclear area were calculated using a pre-
viously developed image analysis code.8 The same code was 
used to calculate parameters from manually selected frames and 
automatically selected frames. Parameter values obtained using 
manual frame selection were plotted against parameter values 
obtained using automated frame selection. The linear regression 
line and R2 value were calculated for each scatter plot. 

6.3 Quantitative Image Classification 

The receiver operator characteristic (ROC) curve was plotted for 
each data set using the calculated N/C ratio (for oral sites) or 
mean nuclear area (for esophageal sites). The optimal threshold 
was set at the Q-point of the ROC curve (the point closest to the 
upper left corner of the ROC plot). Sensitivity and specificity 
were calculated using this optimal threshold and using histo-
logic diagnosis as the gold standard. The area under the 

Fig. 3 Scatter plot of N/C ratio for manually and automatically 
selected frames from the oral data set. The regression line is 
shown; y ¼ 0.89x þ 0.030 and R2 ¼ 0.86. 

Fig. 4 Scatter plot of mean nuclear area for manually and automati-
cally selected frames from the esophageal data set. The regression 
line is shown; y ¼ 0.83x þ 28 and R2 ¼ 0.81. 
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ROC curve (AUC) was calculated for each data set, using 
manual frame selection and using automated frame selection. 

7 Results 
The frame selection procedure was fully automated. The time 
required for automated frame selection was ∼1 s∕frame in the 
original video sequence. 

Examples of high-resolution microendoscopy video sequen-
ces from the oral data set are shown in Video 1 and Video 2. 
Video 1 shows a non-neoplastic oral site and Video 2 shows a 
neoplastic oral site. Manually selected frames from Video 1 and 
Video 2 are shown in Figs. 1(a) and 1(b). Automatically selected 
frames from Video 1 and Video 2 are shown in Figs. 1(c) and 1(d). 

Examples of high-resolution microendoscopy video sequen-
ces from the esophageal data set are shown in Video 3 and 
Video 4. Video 3 shows a non-neoplastic esophageal site and 
Video 4 shows a neoplastic esophageal site. Manually selected 
frames from Video 3 and Video 4 are shown in Figs. 2(a) and 
2(b). Automatically selected frames from Video 3 and Video 4 
are shown in Figs. 2(c) and 2(d). 

7.1 Quantitative Parameter Analysis 

We compared two quantitative parameters extracted from man-
ually and automatically selected frames: N/C ratio (for oral sites) 
and mean nuclear area (for esophageal sites). Results are shown 

Fig. 6 Scatter plots of mean nuclear area for each site in the esophageal data set: (a) scatter plot of mean 
nuclear area for manually selected frames; (b) scatter plot of mean nuclear area for automatically 
selected frames. The threshold line used for classification is shown as a horizontal line in each scatter 
plot. The optimal threshold was set at the Q-point of the ROC curve (threshold ¼ 167 for manually 
selected frames; threshold ¼ 176 for automatically selected frames). 

Fig. 5 Scatter plots of N/C ratio for each site in the oral data set: (a) scatter plot of N/C ratio for manually 
selected frames; (b) scatter plot of N/C ratio for automatically selected frames. The threshold line used for 
classification is shown as a horizontal line in each scatter plot. The optimal threshold was set at the 
Q-point of the ROC curve (threshold ¼ 0.25 for manually selected frames; threshold ¼ 0.25 for automati-
cally selected frames). 

Journal of Biomedical Optics 046014-6 April 2015 � Vol. 20(4) 

Ishijima et al.: Automated frame selection process for high-resolution microendoscopy 

Downloaded From: http://biomedicaloptics.spiedigitallibrary.org/ on 04/29/2015 Terms of Use: http://spiedl.org/terms

http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.1
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.2
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.1
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.2
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.1
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.2
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.1
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.2
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.3
http://dx.doi.org/10.1117/1.JBO.XX.XX.XXXXXX.4


in Figs. 3 and 4 for the oral data set and the esophageal data set, 
respectively. 

7.2 Quantitative Image Classification 

Figure 5 depicts the scatter plots of the N/C ratio for each site in 
the oral data set. Figure 5(a) is a scatter plot of the N/C ratio for 
manually selected frames and Fig. 5(b) is a scatter plot of the 
N/C ratio for automatically selected frames. All 100 measure-
ment sites were grouped into three pathology categories in 
accordance with the original analysis.28 The threshold line set 
at the Q-point of the ROC curve for classification is shown as 
a horizontal line in each scatter plot. 

Figure 6 depicts the scatter plots of mean nuclear area for 
each site in the esophageal data set. Figure 6(a) is a scatter 
plot of the mean nuclear area for manually selected frames 
and Fig. 6(b) is a scatter plot of the mean nuclear area for 
automatically selected frames. All 167 measurement sites were 
grouped into five pathology categories in accordance with the 
original analysis.8 The threshold line set at the Q-point of the 
ROC curve for classification is shown as a horizontal line in 
each scatter plot. 

ROC curves for the oral data set are shown in Figs. 7(a) 
(manually selected frames) and 7(b) (automatically selected 
frames). The Q-points correspond to a sensitivity of 71% and 
a specificity of 80% for manually selected frames [Fig. 7(a)], 

Fig. 7 ROC curves for the oral data set based on (a) manually selected frames and (b) automatically 
selected frames. The Q-points correspond to a sensitivity of 71% and a specificity of 80% for manually 
selected frames (a), and a sensitivity of 69% and a specificity of 76% for automatically selected frames 
(b). The area under the ROC curve (AUC) is 0.82 for manually selected frames and 0.78 for automatically 
selected frames. 

Fig. 8 ROC curves for the esophageal data set based on (a) manually selected frames and (b) automati-
cally selected frames. The Q-points correspond to a sensitivity of 89% and a specificity of 92% for man-
ually selected frames (a), and a sensitivity of 84% and a specificity of 92% for automatically selected 
frames (b). The AUC is 0.92 for manually selected frames and 0.93 for automatically selected frames. 
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and a sensitivity of 69% and a specificity of 76% for automati-
cally selected frames [Fig. 7(b)]. The AUC is 0.82 for manually 
selected frames and 0.78 for automatically selected frames. With 
manual frame selection, there were 9 false positives and 16 false 
negatives. With automated frame selection, there were 11 false 
positives and 17 false negatives. 

ROC curves for the esophageal data set are shown in 
Figs. 8(a) (manually selected frames) and 8(b) (automatically 
selected frames). The Q-points correspond to a sensitivity of 
89% and a specificity of 92% for manually selected frames 
[Fig. 8(a)], and a sensitivity of 84% and a specificity of 
92% for automatically selected frames [Fig. 8(b)]. The 
AUC is 0.92 for manually selected frames and 0.93 for automati-
cally selected frames. With manual frame selection, there 
were 12 false positives and 2 false negatives. With automated 
frame selection, there were 12 false positives and 3 false 
negatives. 

8 Discussion 
In this study, we developed an automated frame selection algo-
rithm and evaluated its performance relative to manual frame 
selection using quantitative parameter analysis and quantitative 
image classification. In both the oral data set and the esophageal 
data set, the results of the analysis using automated frame selec-
tion were very similar to the results previously obtained using 
manual frame selection by a trained observer. This indicates that 
the automated frame selection algorithm can successfully select 
a high-quality representative frame from a high-resolution 
microendoscopy video sequence. This makes it possible to 
implement high-resolution imaging with automated frame selec-
tion at the point-of-care. 

Part 3 of the algorithm (feature point detection) relies on the 
assumption that a high-quality representative frame, in general, 
has a greater number of feature points than other frames that are 
lower in quality or less suitable to represent the site. In order to 
test this assumption, we compared the performance of the full 
algorithm (Parts 1, 2, and 3) to a modified algorithm in which 
Parts 1 and 2 were carried out normally, but in Part 3, feature 
point-based selection was replaced by random selection of one 
of the remaining candidate frames. In the oral data set, random 
frame selection in Part 3 reduced the sensitivity from 69% to 
64%, reduced specificity from 76% to 69%, and reduced the 
AUC from 0.78 to 0.69. In the esophageal data set, random 
frame selection in Part 3 resulted in the same sensitivity 
(84%), reduced specificity from 92% to 86%, and reduced 
the AUC from 0.93 to 0.91. These results support the utility 
of feature point-based selection of high-quality representative 
frames from in high-resolution microendoscopy videos. 

A limitation of this study is that the variables, r1 and r2, 
which establish the fraction of image frames retained in Parts 
1 and 2, were fixed at a user-defined value of 0.5. While this 
value appears to be quite optimal for both the oral data set 
and the esophageal data set considered here, other values of 
r1 and r2 may be more optimal for different data sets. Future 
work will include development of a robust method to automati-
cally select the values of r1 and r2. 

With the implementation of automated frame selection, 
high-resolution imaging can provide quantitative diagnostic 
information to endoscopists and physicians at the point-of-care. 
Moreover, the automated frame selection algorithm makes it 
possible to perform fully automated diagnosis in real time, 
which reduces the need for specialized training of endoscopists 

or physicians. This is especially useful in low-resource settings 
where the availability of pathologists, physicians, and trained 
personnel is limited. 

In conclusion, we have demonstrated an automated frame 
selection algorithm for high-resolution microendoscopy. The 
algorithm rapidly selects a high-quality, representative frame 
with minimal motion artifact from a short video sequence. 
This automated frame selection algorithm could, in principle, 
be applied to any high-resolution imaging system capable of 
digital image acquisition. 
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