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Abstract

The 5-year survival rate for patients with oral cancer remains
low, in part because diagnosis often occurs at a late stage. Early
and accurate identification of oral high-grade dysplasia and
cancer can help improve patient outcomes. Multimodal optical
imaging is an adjunctive diagnostic technique in which auto-
fluorescence imaging is used to identify high-risk regions
within the oral cavity, followed by high-resolution microendo-
scopy to confirm or rule out the presence of neoplasia. Mul-
timodal optical images were obtained from 206 sites in 100
patients. Histologic diagnosis, either from a punch biopsy or
an excised surgical specimen, was used as the gold standard for
all sites. Histopathologic diagnoses of moderate dysplasia or
worse were considered neoplastic. Images from 92 sites in the
first 30 patients were used as a training set to develop auto-

mated image analysis methods for identification of neoplasia.
Diagnostic performance was evaluated prospectively using
images from 114 sites in the remaining 70 patients as a test
set. In the training set, multimodal optical imaging with
automated image analysis correctly classified 95% of nonneo-
plastic sites and 94% of neoplastic sites. Among the 56 sites in
the test set that were biopsied, multimodal optical imaging
correctly classified 100% of nonneoplastic sites and 85% of
neoplastic sites. Among the 58 sites in the test set that corre-
sponded to a surgical specimen, multimodal imaging correctly
classified 100% of nonneoplastic sites and 61% of neoplastic
sites. These findings support the potential of multimodal
optical imaging to aid in the early detection of oral cancer.
Cancer Prev Res; 10(10); 563–70. �2017 AACR.

Introduction
The overall 5-year survival rate for oral cancer has remained

constant at approximately 64% over the past decade (1). Early
detection is associatedwith ahigher 5-year survival rate of 80%(1,
2). Unfortunately, although the oral cavity is readily accessible for
clinical examination, only 30% of patients with oral cancer are
diagnosed at a localized stage. The 5-year survival rate for patients
with advanced disease is only 37% (1). Early diagnosis of oral
cancer remains essential for improving treatment outcomes and
survival rates.

The current standard of care for oral cancer detection,
visual inspection and palpation under white light illumination,
is strongly dependent on the experience and expertise of the
clinician. Potentially malignant lesions can often appear similar
to benign lesions or be missed because of poor visual contrast
between the lesion and surrounding normal tissue (2). A defin-
itive diagnosis can be confirmed with a biopsy, but the process is
resource intensive, time consuming and requires a trained health

care provider. Imaging tools that can rapidly and accurately
identify potentially neoplastic oral lesions could improve patient
outcomes.

Wide-field autofluorescence imaging (AFI) is a promisingmeth-
od to improve the contrast between normal and neoplastic tissue
(3–8). Tissue is illuminated with blue or ultraviolet light, which
excites blue–green fluorescence predominantly originating from
collagen cross-links in the stroma (9–11). Neoplasia is associated
with loss of fluorescence (LOF) likely related to degradation of
collagen cross-links (9, 11). Secondary contributors to the LOF
include thickening of the epithelial layer, increase of epithelial
scattering, lymphocytic infiltration of the lamina propria (sub-
epithelial stroma), and angiogenesis associated with dysplasia (9,
12–14). AFI has been reported to identify neoplastic lesions with
high sensitivity; however, it has poor specificity because benign
lesions, such as inflammation, can also show LOF (7, 9).

High-resolution imaging modalities, such as confocal micros-
copy or microendoscopy, have the potential to improve the
specificity ofAFI (15–23). Topical contrast agents, including acetic
acid and proflavine, highlight cell nuclei and enable direct visu-
alization of cellular morphology without removing tissue (20,
24–28). Direct visualization of cell morphology enables real-time
assessment of nuclear features, such as nuclear area, nuclear
crowding, and nuclear to cytoplasmic area ratio (29–31). One
drawback of these high-resolution imaging techniques is their
smallfieldof view (FOV),which canpotentiallymiss focal areas of
neoplasia.

Multimodal imaging, where wide-field AFI is used to identify
suspicious regions of tissue, which are then further interrogated
with high-resolution imaging, could enable identification of
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neoplastic oral lesions with high sensitivity and specificity. Pierce
and colleagues performed a 30-patient pilot study to evaluate the
accuracy of multimodal imaging using AFI and high-resolution
microendoscopy (HRME) to identify oral neoplasia (25).Manual
image analysis of the multimodal images correctly classified 98%
of nonneoplastic imaging sites and 95%of imaging sites graded as
moderate or severe dysplasia or cancer (25). Moreover, multi-
modal optical imaging with manual image analysis classified as
neoplastic 35% of sites graded as mild dysplasia; of these, 80%
overexpressed p63. In contrast, only 10% of mild dysplasia sites
that were classified as nonneoplastic by multimodal imaging
overexpressed p63. Although results of the initial pilot study were
promising, the analysis was performed retrospectively in a rela-
tively small dataset. In addition, the image analysis procedure
used in the study required several user input steps. Here, we report
a prospective evaluation of a fully automated analysis of multi-
modal optical imaging to identify oral neoplasia. Using data from
the 30 patients reported by Pierce and colleagues as a training set,
we developed an automated image analysis algorithm. We com-
pare performance of this automated algorithm with the previ-
ously reported manual algorithm. An additional 70 patients are
then evaluated as a test set.

Materials and Methods
Study population

A total of 100 patients over the age of 18 scheduled for surgical
resection of clinically visible oral lesions were recruited for the
study and provided written, informed consent prior to participa-
tion. This study was approved by the Institutional Review Boards
of the University of TexasMDAnderson Cancer Center (Houston,
TX) and Rice University (Houston, TX).

Imaging systems
Images of the oral mucosa were obtained using two imaging

systems: a wide-field AFI system and an HRME. The technical
specifications of both systems have been previously described in
detail (23, 25). Briefly, the AFI system collects both a 405 nm
excited autofluorescence image and awhite light reflectance image
from a 4.5-cm diameter FOV with a 100 mm lateral resolution to
reveal suspicious regions with LOF. The HRME is a fiber optic,
fluorescence microscope that collects a 455 nm excited fluores-
cence image from a 720 mmFOVwith a 4.4 mm lateral resolution;
topical application of the fluorescence contrast agent proflavine
(0.01% in PBS) enables visualization of nuclear morphology to
confirm the presence of neoplasia (32).

Contrast agent
Proflavine has a long history of safe use as a topical antiseptic

and has been used as a contrast agent for confocal endomicro-
scopy trials (33, 34). In addition, proflavine is a component of
triple dye, a topical antiseptic used primarily for umbilical cord
care (35). We performed this study with proflavine under IND
status with the FDA (IND #108932).

Study protocol
We followed the study protocol described by Pierce and col-

leagues (25). Briefly, patients were imaged while under general
anesthesia immediately before surgery. The oral surgeon first
performed a standard white light examination to identify up to
four clinically abnormal imaging sites and one clinically normal
imaging site. Imaging site locations were selected on the basis of

the surgeon's identification of any lesion areas under white light
examination; additional sites could be selected on the basis of the
signal from the imaging systems. Each imaging site was then
described and classified by the surgeon as normal, abnormal low
risk, abnormal high risk, or cancer. The surgeonwasnot blinded to
the patient's history. Next, autofluorescence imageswere acquired
from each anatomic area containing an imaging site. After AFI
imaging, up to 1 mL of proflavine solution (0.01% w/v) was
topically appliedwith a cotton-tipped applicator to each region of
interest (ROI). HRME images were then acquired; the surgeon
placed the fiber optic probe in gentle contact at each imaging site.
A digital photograph was taken at each location where the fiber
probe was placed for later correlation of imaging and biopsy sites.
Finally, either a 4-mm punch biopsy was taken at each imaging
site location or a surgical specimenwas taken and the oral surgeon
identified the location of the imaging site on the specimen after
resection of the tissue.

Pathology processing and review
Imaging sites corresponding to a 4-mm punch biopsy and

imaging sites corresponding to a surgical specimenwere evaluated
separately. Biopsy and surgical specimens were routinely sec-
tioned and stained with hematoxylin and eosin, then reviewed
by the study pathologist who was blinded to the optical imaging
results. Sites were graded as normal/hyperkeratosis, mild dyspla-
sia, moderate dysplasia, severe dysplasia, or cancer according to
the WHO grading system (36).

A systematic review was also performed for histologic slides of
the imaging sites taken from surgical specimens in the test set
classified as neoplastic by optics to evaluate their heterogeneity.
Each slide was visually evaluated by the study pathologist to
measure the overall length of the slide specimen and to map the
different histologic diagnoses present in each slide. The fraction of
neoplasia observed in each slide was then calculated using the
histologic map. Here, fraction of neoplasia is the length of the
slide specimen classified as neoplastic by the study pathologist
divided by the entire length of the slide specimen.

IHC staining
To explore correlation between optical and molecular markers

of progression, IHC staining ofmolecularmarkers Ki-67, p63, and
PHH3 was performed on sites corresponding to a biopsy diag-
nosed as normal or dysplastic (any grade) by pathology to aid in
delineation of mild dysplasia. These markers were previously
selected by Pierce and colleagues because prior studies have
shown they are overexpressed in oral neoplasia and associated
with the risk of neoplastic progression (25). Ki-67 is widely
accepted as a marker of cellular proliferation. Increased Ki-67
expression has been observed in oral tissue diagnosed from
normal through cancer. In addition, Ki-67 has shown predictive
potential when combined with other markers (37). p63 is part of
the p53 tumor suppressor family and has been assessed as a
biomarker to predict oral cancer risk in patients with leukoplakia
(38). High expression levels were previously suggested to be well
associatedwithpositive optical classificationusingHRMEandAFI
(25). Finally, phosphohistone-H3 (PHH3) is a core histone
protein associated with mitotic figures (39). Evaluation and
expression scoring of tissue sections followed the criteria reported
byPierce and colleagues (25). Briefly, IHC stainingwas performed
using standard techniques with the automated BOND MAX
immunohistochemistry stainer by Leica Biosystems. After
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staining, the study pathologist designated a discrete IHC score
based on the staining of each marker for each site. Ki-67 staining
was reported as staining confined in the basal layer only, lower
one third of the epithelium, mid one third of the epithelium, or
full thickness of the epithelium. p63 expression was reported as
staining confined in the lower one third, two thirds, or full
thickness of the epithelium. PHH3 staining was reported by
quantifying the number of positively stained nuclei within a
single 20�microscope FOV in addition to the epithelial location.

Image selection and quality control
Autofluorescence images were reviewed for quality control

using the following criteria: area of interest was in focus and no
motionblurwas present. For each autofluorescence imagepassing
quality control, the surgeon selected a 31 � 31 pixel ROI that
corresponded with the location of an imaging site. This approx-
imately corresponds to the area of a 4-mm punch biopsy. The
white light image of the anatomic area and the digital photograph
of the fiber probe location were used as a reference to identify the
ROI location.

Multiple HRME videos were taken for each imaging site. HRME
videos were reviewed from each site to select a single, represen-
tative image for each imaging site. A single frame was first selected
from every movie acquired using an automated frame selection
algorithm described by Ishijima and colleagues (40). Single
frames were then reviewed together at each corresponding imag-
ing site. Next, three reviewers blinded to the histologic diagnosis
of each biopsy site selected the single image deemed to have the
highest imagequality by consensus agreement. The reviewers used
the following selection criteria: greater than 50% of the imaging
FOV was unobscured by debris or keratin, motion blur was not
present, andnuclei could be distinguishedby visual evaluation. In
the case where multiple high-quality images were available,
reviewers selected the image that appeared to have the largest
nuclei by visual evaluation.

Quantification of AFI and HRME
To identify suspicious regions in autofluorescence images, the

ratio of red to green autofluorescence intensity was calculated at
eachpixel in the image. To account for patient to patient variation,
this red to green (R:G) intensity ratio map was normalized with
respect to the R:G intensity ratio of a normal ROI in the same
patient. Selection of the normal ROI was performed by an
automated algorithm, which identified the ROI with the lowest
R:G intensity ratio in the tissue region visible in the image; a
clinician subsequently viewed the corresponding white light
image and confirmed that this ROI was indeed clinically normal.

HRME images for each site were analyzed using an automated
image analysis procedure (30). Briefly, the algorithm first iden-
tifies regions in the HRME image that are free of areas that are too
bright or too dim, adjusts the contrast of the image, and converts
the image into a binary image to separate the nuclei from the
cytoplasm. Morphologic filtering is then applied to the binary
image to eliminate regions corresponding to small pieces of
debris. After image segmentation, the following metrics were
calculated for each HRME image: mean, median, and SD of
nuclear area, eccentricity, solidity, and aspect ratio. Additional
metrics included ratio of nuclear intensity to cytoplasmic inten-
sity, Weber contrast, Michelson contrast, and nuclear to cyto-
plasmic area ratio. In addition, each nucleus in the FOV was
classified as normal or abnormal using criteria based on nuclear

area and eccentricity reported by Quang and colleagues (30). In
this case, a nucleus was defined as abnormal if its nuclear area was
greater than or equal to 162.9 mm2 and nuclear eccentricity was
greater than or equal to 0.686. In addition, any nucleus with a
nuclear area greater than or equal to 200mm2was also classified as
abnormal regardless of its eccentricity. The fraction of abnormal
nuclei and the number of abnormal nuclei per mm2 were calcu-
lated for each FOV. All analyses were performed in MATLAB
(Mathworks).

Classification of imaging sites
A two-class linear discriminant algorithm was developed to

discriminate between neoplastic (histologically graded as mod-
erate/severe dysplasia or cancer) and nonneoplastic (histologi-
cally graded as normal) imaging sites. A training set for the
algorithm was generated using data from the first 30 patients
previously reported by Pierce (25), and a test set was generated
using data from the remaining 70 patients. Imaging sites diag-
nosed as mild dysplasia were excluded from the initial classifi-
cation. To select the optimal HRME image metric, ROC curves
were generated for each of the 21 image metrics calculated.
Diagnostic performance was evaluated by calculating the area
under the ROC curve (AUC). The HRME image metric with the
largest AUC for the training set was selected as the optimal image
metric. Next, the normalized R:G ratio and the best performing
HRME feature were used together to develop a two-class linear
discriminant analysis algorithm to classify the site as neoplastic or
nonneoplastic. The algorithm was developed using images from
the training set and evaluated using the test set. Performance was
calculated separately for sites where the histologic diagnosis was
obtained from a biopsy andwhere it was obtained from a surgical
specimen. The distinction between biopsies and surgical speci-
mens was made because imaging site correlation was performed
at different points in time during the study procedure and because
of the difference in size between the biopsies and the surgical
specimens.

Results
Image selection

A total of 100 patients were recruited for the study. Images were
obtained successfully from 93 patients; 7 were not imaged
because of either instrument failure or excess of blood at the
lesion area. Images were acquired from 296 sites. AFI and HRME
images were both available and passed QC review at 206 sites.
Ninety sites were excluded from the multimodal image analysis
for the following reasons: missing image data from either AFI or
HRME (44 sites) or poor-quality image from either AFI or HRME
(46 sites). Sites excluded due tomissing data occurred because the
AFI image taken did not capture the area where the biopsy was
taken. Sites excluded because of poor image quality most com-
monly occurred because nuclei could not be visualized in the
HRME image because of the presence of surface keratin. Table 1
summarizes the histologic diagnosis for all sites included in the
analysis. For the first 30 patients, images from 92 sites were used
for the training set. Biopsies were obtained for 86 of these sites,
while surgical specimenswere obtained from six sites. For the next
70 patients, a 4-mmpunch biopsy was taken for 56 of the imaged
sites, and a surgical specimen was available for 58 of the imaged
sites. Images corresponding to biopsies and to surgical specimens
were evaluated as two separate test sets.
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Application of image analysis
Figure 1 shows multimodal images analyzed using the auto-

mated procedure from a patient with a clinically suspicious lesion
on the right posterior tongue. Figure 1AandB show thewhite light
reflectance and autofluorescence images, respectively. The white
squares in Fig. 1B represent ROIs corresponding to biopsy site
locations. Biopsies were taken at the lesion from an area display-
ing LOF and at a clinically normal region selected by the
surgeon. Figure 1C shows the normalized R:G ratio overlaid atop
the white light image. The highlighted areas represent areas with a
normalized R:G ratio above a previously established threshold
value. Figure 1D–F and 1G – 1I shows the raw and processed
HRME images and corresponding histology of sites 1 and 2,
respectively. Site 1 was graded as nonneoplastic, and correspond-
ing images showed a low normalized R:G ratio and number of
abnormal nuclei (1.26, 99.8). Site 2 was graded as severe dyspla-
sia, and corresponding images showed a high normalized R:G
ratio and number of abnormal nuclei per mm2 (2.39, 371.1).

Table 2 summarizes the area under theROCcurve calculated for
the five best performing HRME image metrics for imaging sites
from the training set. Number of abnormal nuclei per mm2 was
the best performing HRME metric with an AUC of 0.896.

Diagnostic performance in training and test sets
In the original analysis by Pierce and colleagues, 100 imaging

sites were originally acquired from 30 patients used in the
training set. For the automated analysis, eight of the 100
imaging sites were excluded from analysis because of poor
image quality. Figure 2A shows the original multimodal image
analysis reported by Pierce and colleagues using nuclear to
cytoplasmic (N/C) area ratio and normalized R:G ratio; the
linear threshold shown correctly classified 98% of imaging sites
histologically graded as nonneoplastic and 95% of histologi-
cally graded neoplastic imaging sites. Figure 2B shows multi-
modal analysis for the training set generated from the same 30
patients using the automated image analysis reported here.
Number of abnormal nuclei per mm2 was used instead of N/
C ratio. The linear threshold for this analysis correctly classified
95% of nonneoplastic sites and 94% of neoplastic sites. Figure
2C and D shows the multimodal analysis for the test set. Results
for the 56 imaging sites that were biopsied are shown in Fig. 2C,
and results from the 58 sites for which a surgical specimen was
obtained are shown in Fig. 2D. For sites that were biopsied, the
same linear threshold used in Fig. 2B correctly classified 100%
of nonneoplastic sites and 85% of neoplastic sites. For the 58
sites corresponding to a surgical specimen, performance was
comparable for nonneoplastic sites (100% correctly classified),
but lower for neoplastic sites (only 61% correctly classified).

Table 1. Summary of imaging sites in the multimodal image analysis set, by
pathologic diagnosis

Training set: Patients 1–30 Test set: Patients 31–100
Pathologic
diagnosis Biopsy

Surgical
specimen Biopsy

Surgical
specimen

Normal 37 4 34 6
Mild dysplasia 14 1 9 8
Moderate dysplasia 13 0 3 9
Severe dysplasia 6 0 4 8
Cancer 16 1 6 27
Total 86 6 56 58

Figure 1.

Multimodal images from a patient with a clinically
suspicious lesion at the right lateral tongue. Top row
shows the white light reflectance image (A),
autofluorescence image (B), and normalized R:G ratio
overlay (C). White squares in B denote regions of
interest corresponding to biopsy site locations. Middle
row shows the raw HRME (D), processed HRME image
(E), and corresponding histology image (F) for biopsy
site 1. Bottom row shows the raw HRME image (G),
processed HRME image (H), and corresponding
histology (I) for biopsy site 2. Histology images taken at
�20 magnification. Scale bar, 100 mm. R:G, red:green.
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We hypothesized that the reduced accuracy for identification
of neoplasia in sites from which a surgical specimen was
obtained was because of challenges identifying the location
from which the image was obtained in the relatively large
surgical specimen. Such registration errors would not affect
performance for nonneoplastic specimens. To test this hypoth-
esis, we assessed the fraction of the epithelium that contained
neoplasia for each surgical specimen. We compared this frac-

tion for neoplastic sites that were correctly classified and for
those that were incorrectly classified; results are shown in Fig. 3.
The mean fraction of neoplasia in the surgical specimen
was significantly lower (P < 0.001) in sites that were misclas-
sified as nonneoplastic than in sites that were correctly classi-
fied as neoplastic, suggesting that the decrease in performance
is related to challenges in identifying the image site on the
surgical specimen.

Stratification of mild dysplasia by IHC
Of the 296 sites imaged, IHC staining for Ki-67, p63, andPHH3

was performed for sites that were histologically graded as normal
or dysplastic (any grade).Of these sites, IHC stainingwas acquired
from102 sites corresponding to a 4-mmpunch biopsy. Complete
IHC results were available at 97 sites; of these, 48 were graded as
normal, 25 asmild dysplasia, 14 asmoderate dysplasia, and 10 as
severe dysplasia. Figure 4A shows mean IHC scores for each

Table 2. AUC of the five best performing HRME image metrics for the training
set

HRME image metric AUC

Number of abnormal nuclei (1/mm2) 0.896
SD of nuclear area 0.875
Median eccentricity 0.858
Mean aspect ratio 0.857
Mean eccentricity 0.856

Figure 2.

Diagnostic algorithm based on multimodal imaging parameters for training set (A) using manual image analysis as reported by Pierce and colleagues, training set
using automated image analysis (B), test set using automated analysis of biopsied sites (C), and test set using automated analysis of surgical specimens (D). Dashed
lines, linear threshold values to discriminate neoplastic and nonneoplastic sites. Data from two correctly classified neoplastic sites inCwere omitted fromviewdue to
scaling of the x-axis.
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biomarker versus pathology diagnosis; in general, biomarker
expression level increased with pathology grade for all three
markers.

Complete IHC results and multimodal imaging data were
available for 44 of the 48 biopsy sites graded as normal and 42
of the 49 biopsy sites graded as dysplasia (any grade); of the
dysplasia sites, 21 were graded as mild dysplasia, 12 as moderate
dysplasia, and 9 as severe dysplasia. Figure 4B shows the fraction
of imaged sites with a positive IHC score for p63 and for the full
panel of markers tested. For sites graded as mild dysplasia, p63
expressionwas elevated in 27%of sites classified as nonneoplastic
byoptical assessment, butwas elevated in 60%of sites classified as
neoplastic by optical assessment. Figure 4C shows a scatter plot of

the imagemetrics for the 21 imaging sites graded asmild dysplasia
stratified by p63 expression.

Discussion
Early detection of oral neoplasia remains the best way to

improve long-term patient outcomes. Improved diagnostic tools
are needed to detect early-stage disease quickly and accurately.
Multimodal imaging using AFI to identify suspicious areas and
HRME to investigate those areas further can be a valuable diag-
nostic adjunct to identify oral neoplasia. The addition of auto-
mated image analysis provides quantitative, real-time feedback.
We developed a two-parameter classification algorithm using a
training set generated from the first 30 patients enrolled in the
study and evaluated its performance in an independent test set
generated from the remaining 70 patients. In the training set, the
automated image analysis achieved comparable classification
accuracy to previously reported manual results while following
consistent, objective criteria and minimizing reliance on user
input. Furthermore, performance of the classification algorithm
showed similar performance in the test set for those sites that were
biopsied immediately following imaging.

The apparently lower sensitivity in sites corresponding to
surgical specimens (61% sensitivity at sites corresponding to
surgical specimens compared with 85% sensitivity at sites corre-
sponding to biopsies) is likely due to the challenges in precisely
identifying the small location thatwas imaged in the large surgical
specimen. The FOV of the HRME is 720 mm in diameter, an area
that is slightly smaller than a punch biopsy, but more than an
order of magnitude smaller than a typical surgical specimen.
Within a given specimen, histology can vary from normal to
high-grade dysplasia and back within a small spatial region. The
multifocal nature of oral dysplasia makes precise coregistration
between the image site and the histology result more difficult in
large specimens. Figure 3 shows that classification errors aremore
likely in images that were obtained from surgical specimens in
which a smaller fraction of the epithelium contains neoplasia,
consistent with this hypothesis.

Figure 3.

Comparison of mean fraction of neoplasia for histologic slides for imaging sites
taken from surgical specimens in the test set correctly or incorrectly classified as
neoplastic by optics. � , P < < 0.001.

Figure 4.

IHC analysis of pathologically normal and dysplastic tissue sites. A, Mean IHC score versus pathology grade for each biomarker. Errors bars, SEs. B, The fraction of
tissue siteswith positive IHC score for p63or for the full panel ofmarkers versus pathologic and optical diagnosis.C,Plot of number of abnormal nuclei permm2versus
normalized red togreen intensity ratio of 21 imaging sites diagnosed asmild dysplasia by histopathology, stratifiedbyp63 expression. R:G, red:green; dysp, dysplasia.
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It can be challenging for clinicians to estimate the risk of
malignant progression for lesions with mild dysplasia as it can
occur temporarily because of inflammation or trauma or it can be
the initial stage of transition to high-grade dysplasia (41). We
observed high p63 expression in 60% of sites graded as mild
dysplasia and classified as neoplastic by optical assessment. In
contrast, we observed high p63 expression in only 27% of sites
graded as mild dysplasia and classified as nonneoplastic by
optical assessment. These results suggest that there is a relation-
ship between high biomarker expression and optical imaging.
However, other candidate markers for progression should also be
explored in a larger number of sites with mild dysplasia.

Although the work described in this study shows promise,
additional work is needed to eventually use multimodal optical
imaging practically in a general clinic setting. Future work would
start with integrating the image analysis algorithms with the
image acquisition and upgrading instrumentation to improve
image quality. Currently, the image analysis algorithms have a
computation time of approximately 12 to 16 seconds. Porting to a
lower level computer language would further reduce this com-
putation time. Instrumentation upgrades would entail reducing
the size and cost of the systems and reducing the image acquisition
times to improve image quality. In addition, integration into the
clinical workflow could be aided by use of tablet-based interfaces,
which has been reported in tandem with the HRME (30). Future
work will also entail implementing the automated image analysis
in real-time to investigate how the availability of real-time diag-
nostic information will impact the clinician's decision-making
process.

Results of this study provide evidence that multimodal optical
imaging could be a valuable diagnostic aid to improve identifi-
cation of oral neoplasia and to assist in determining optimal sites
for biopsy. Multimodal imaging provides objective, quantitative
results that may be especially useful in situations where an expert
clinician with experience evaluating oral lesions is not available.
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