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odel-based analysis of reflectance and fluorescence 
pectra for in vivo detection of cervical dysplasia 
nd cancer 
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 Introduction 

ptical techniques offer the ability to noninvasively detect
pectral alterations associated with morphological and bio-
hemical changes that occur in tissue during neoplastic trans-
ormation and progression. Many groups have shown that dif-
use refectance and fuorescence spectra can be used to detect
recancer in the cervix and other organ sites.1–10 A recent
aper reviewed 26 studies that reported diagnostic algorithms
ased on diffuse refectance spectra, fuorescence spectra, or
he combination; approaches that combine refectance and
uorescence spectra offer the advantage of monitoring mor-
hologic changes using refectance spectra and biochemical

ddress all correspondence to Rebecca Richards-Kortum, Rice University, De-
artment of Bioengineering, Houston Texas 77005. E-mail: rkortum@rice.edu 
ournal of Biomedical Optics 064016-
changes using fuorescence spectra, and generally result in 
higher diagnostic accuracy.11 

A variety of empirical methods have been used to reduce 
the dimensionality of tissue fuorescence and refectance spec-
tra to develop classifcation algorithms for detection of
neoplasia.1,6,9,12–16 Physically based models have also been 
used to extract tissue spectroscopic parameters for use in clas-
sifcation algorithms.7,17–20 Although diagnostic performance 
is typically similar for physical and empirical methods, physi-
cal models give insight into the changes occurring in the tis-
sue that can be probed spectroscopically. Accurate extraction 
of optical properties from the in vivo spectra could perhaps 
provide better diagnostic accuracy and can potentially provide 
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nsight into understanding which precancerous lesions will
rogress and which can be left untreated. 

The goal of this paper is to develop and evaluate a physi-
ally based model to analyze fuorescence and refectance
pectra of normal and neoplastic cervical tissue. We have pre-
iously reported an analytical model to extract cervical tissue
ptical properties from fuorescence spectra.22 The develop-
ent of an analytical model to analyze both cervical tissue
uorescence and refectance offers several important advan-

ages. The combination of both techniques offers the opportu-
ity to improve diagnostic performance. In addition, refec-
ance spectra can be analyzed to determine tissue absorbance
nd scattering properties, reducing the number of free model
arameters which are subsequently needed to analyze fuores-
ence data. 

In this paper, we evaluate several refectance-based models
ogether with our fuorescence model to analyze clinical spec-
ra of normal and neoplastic cervical tissue. A number of ana-
ytical models have been developed to describe tissue refec-
ance. Many are based on diffusion theory, despite its known
imitations in tissue at short source-detector separations as
ell as the fnite range of optical properties at which it is
alid.18 Sun et al. developed a diffusion-based refectance
odel that extracts tissue optical properties from normalized

pectra and tested it using data obtained at various source-
etector separations.17 Zonios et al. applied a diffusion-based
efectance model to analyze refectance data from human ad-
nomatous colon polyps in vivo.7 In addition to diffusion-
ased models, higher-order approximations have been pro-
osed. Hull and Foster proposed a model using the P3

pproximation to the Boltzmann transport equation as well as
 hybrid diffusion-P3 approximation �P3-Hybrid�.18 This ap-
roximation expands the Boltzman transport equation in
erms of Legendre polynomials. The Pk approximation refers
o truncating the expression after the kth polynomial; diffu-
ion theory is formally the P1 approximation. Palmer and Ra-
anujam developed a Monte Carlo–based inverse refectance
odel and applied it to ex vivo human breast tissue samples.19

eif et al. developed an empirical model for refectance based
n Monte Carlo �MC� simulations and tissue phantom
xperiments.20 

We initially performed MC simulations of cervical tissue
efectance to determine whether cervical tissue refectance
ould be described using a one- or two-layer geometry. We
hen compared the results of the P3-Hybrid model proposed
y Hull and Foster18 and the diffusion-based model used by
un et al.17 to the results of MC simulations to determine the

evel of complexity needed to accurately extract optical prop-
rties from diffuse refectance spectra of cervical tissue. Fi-
ally, we combined the resulting analytical model of tissue
efectance together with our analytical model of tissue fuo-
escence to create an adjoint model that could be used to
xtract tissue optical properties from measurements of tissue
uorescence and refectance. This inverse adjoint model was
pplied to in vivo clinical data from 330 patients, and the
iagnostic performance of the algorithm based on the
xtracted parameters is assessed. 
ournal of Biomedical Optics 064016-
Fig. 1 Diagram of the fiber optic probe used to measure the in vivo 
fluorescence and reflectance spectra. The fluorescence is collected 
through the large central region, and the reflectance is collected at six 
source-detector separations at distances from the detector 0.25 mm 
�1, referred to as SD0�, 0.5  mm  �2, referred to as SDa�, 0.75 mm 
�3, referred to as SDb�, 1.1  mm  �4, referred to as SD1�, 2.1  mm  �5, 
referred to as SD2�, and 3.0 mm �6, referred to as SD3�. 

2 Methods 
2.1 Overview 

Cervical tissue is comprised of an epithelial layer and an un-
derlying stromal layer. Figure 1 shows the fber optic probe 
geometry used to collect clinical measurements of cervical 
tissue. Fluorescence measurements are obtained through a 
central channel of the probe, while refectance measurements 
are obtained at several different source-detector separations, 
ranging from 250 �m to  3  mm. The fber optic probe con-
fguration determines the depth of tissue that is interrogated. 
We have shown previously that tissue fuorescence collected 
with this device samples fuorescence contributions from both 
the epithelium and the stroma. Monte Carlo simulations were 
performed to determine the fraction of refectance signal pro-
duced in the epithelium and stroma for this probe geometry. 
Next, two different refectance models were compared to the 
results of the MC simulations to determine what level of com-
plexity is needed to describe the data collected clinically. Fi-
nally, the previously developed two-layer fuorescence model 
was combined with the refectance model chosen to extract 
optical properties from clinical data. 

2.2 Model Input Parameters 

Cervical tissue was modeled as a 300-�m-thick epithelial 
layer above a semi-infnite stromal layer. Wavelength-
independent scattering anisotropy values of 0.97 and 0.88 
were used for the epithelium and stroma, respectively. The 
scattering and absorption coeffcients for squamous normal 
cervical tissue were used as described in Ref. 21, except that 
a hemoglobin oxygen saturation value of 85% was assumed. 
The scattering and absorption coeffcients for high-grade pre-
cancer are based on results in Ref. 22. The scattering in the 
epithelium is increased by a factor of three relative to normal 
tissue for high-grade precancer, and the scattering in the 
stroma is decreased by a factor of 0.75 relative to normal 
tissue. The absorption in the epithelium is unchanged from 
that in normal tissue for modeling high-grade precancer, but 
the absorption in the stroma is increased by a factor of two 
relative to that of normal tissue. Figure 2 shows the resulting 
wavelength-dependent absorption and scattering coeffcients 
�2 November/December 2008 Vol. 13�6� 
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ig. 2 Squamous normal �SqN� and high grade �HG� tissue optical
cattering coefficient 

sed to model squamous normal cervical tissue and high-
rade cervical precancer. These values were used as input to
oth analytical models of refectance and MC simulations.
he input parameters do not take into account the time-
ependent effect of acetic acid application that has been de-
cribed by Balas.23 The changes that can occur to the epithe-
ial scattering coeffcient over time due to acetic acid
pplication do not have a substantial effect on the refectance
pectrum measured by our device because most of the signal
s from the stromal layer. 

.3 MC Model 
he fxed-weight, multilayered MC code has been previously
escribed and validated by Arifer et al.21 The MC simulations
se typical optical properties of normal and high-grade cervi-
al tissue: absorption coeffcient ��a�, scattering coeffcient
�s�, and anisotropy �g�. Monte Carlo simulations were car-
ied out for normal tissue and high-grade precancer, modeling
issues both with a two-layer geometry, with a thin epithelial
ayer on top of the underlying stroma, and a one-layer geom-
try consisting of only a stromal layer. 

.4 Diffuse Reflectance Models 

.4.1 Diffusion theory 

he diffusion theory model used the formulation presented in
ef. 17. Figure 3 shows the boundary-mismatched two-
imensional �2-D� semi-inftine homogeneous tissue model
sed in. Ref. 17. The following expression for the detected
efectance, R �r�, is used for the forward model: 
d

ournal of Biomedical Optics 064016-
rties used as input for modeling: �a� absorption coefficient and �b� 

a� 1 1 e−�effr1 1 
Rd�r� = � � � + � + 2zb��eff + 24� ��t r1 r1 ��t

1 e−�effr2 

� �eff + 2 . �1�� � �
r2 r2 

The transport albedo is defned as a�=�� / ��a+���, where s s
��= �1−g� and g is the anisotropy. The total interaction s �s

coeffcient is �t�=�a+��. The effective attenuation coeff-s

cient is �eff= 3�a��a+���. The distance from the scattering s

source to the detector is r1= �z−z0�2+r2, where z is the dis-
tance into the tissue from the surface, and z0 is the depth of 

Fig. 3 Diagram of the tissue model used in Ref. 17. 
 prope
�3 November/December 2008 Vol. 13�6� 
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he scatterer. The corresponding distance to the image source
2s r2= �z+z0−2zb�2+r . zb is the distance from the tissue

urface to the extrapolated boundary and is defned as zb
−12AD, where A= �1−rd� / �1+rd� , rd=−1.44nrel 

−2+0.71nrel 
0.668+0.0636nrel, and nrel=ninside /noutside, the ratio of re-

ractive indices. The diffusion constant is defned as D
1 /3��a+���.s

.4.2 P3-hybrid approximation 

he refectance expression used for the P3-Hybrid forward
odel, derived in Ref. 18,  is  Rd�r ;z0�

The de-�C��GEBC,asymptotic 
�r ;z0�+CjjzEBC 

�r ;z0�	�Adetector�. 
ected refectance is modeled as the sum of the fuence and
ux with appropriate coeffcients multiplied by the area of the
etector used where 

2 2 2
1 e−�eff

 z0+r e−�eff
 �z0 + 2zb�

2+r� ��GEBC,asymptotic 
= 

2 2 
− 

24�D  z0 + r  �z0 + 2zb�2 + r

nd 

2 2+r1 1 e−�eff
 z0 

jz = z0 + �eff + �z0 + 2zb�2 2 2 24� 
� � z0 + r

��  z0 + r
�

2
1 e−�eff

 �z0 + 2zb�
2+r

� + �eff .� �� ��2 2 �z0 + 2zb�2 + r  �z0 + 2zb�2 + r

he variables are all defned in the same way as for the dif-
usion theory except for A, the internal refectance dependent
onstant. In the P3-Hybrid model, A= �1+Reff� / �1−Reff�,
here 

�/2R� + RjReff = , R� = 2 sin � cos �RFresnel���d� ,
2 −  R� + Rj 0 

nd 

�/2 

Rj = 3 sin � cos2 �RFresnel���d� 
0 

here RFresnel��� is the Fresnel refection coeffcient. 

.4.3 Fluorescence model 
he fuorescence model used has been previously described in
etail in Ref. 22. Fluorescence spectra measured at four exci-
ation wavelengths, 340, 350, 360, and 370 nm, are ft to an
nalytic expression for tissue fuorescence to extract optical
roperties of the tissue. The extracted parameters include the
oncentration of fuorophores reduced nicotinamide adenine
inucleotide �NADH�, keratin, favin adenine dinucleotide
FAD�, and three types of collagen crosslinks, the scattering
oeffcient of the epithelium, the stromal hemoglobin and pro-
ein concentrations, the intensity and slope of the scattering
oeffcient of the stroma, and the hemoglobin oxygen satura-
ion. 

.4.4 Adjoint inverse model 
he adjoint inverse model allows for extraction of optical
roperties from the collected refectance and fuorescence
ournal of Biomedical Optics 064016-
spectra. Tissue refectance spectra are frst ft to an analytical 
expression to obtain �a and �s of the stromal layer. Tissue 
fuorescence spectra are then ft to the analytical expression 
for fuorescence using the optical properties detected from 
refectance spectra and allowing the epithelial scattering and 
fuorophores concentrations to vary. 

3 Instrumentation 
A fber optic point probe was used to measure the refectance 
and fuorescence spectra of normal and precancerous regions 
in 330 patients. Measurements were made of squamous nor-
mal tissue, columnar normal tissue, and tissue at the 
squamous-columnar junction, which may contain both squa-
mous and columnar tissue. The details of the instrumentation 
used can be found in Ref. 24. Briefy, an arc lamp and flter 
wheels act as the illumination source and the diffuse refec-
tance and fuorescence spectra are collected through a fber 
probe coupled to a spectrograph and CCD camera. Fluores-
cence spectra were collected at excitation wavelengths be-
tween 300 and 530 nm in 10 nm increments. Refectance 
spectra were collected at six different source-detector separa-
tions ranging from 0.25 mm to 3.1 mm over a wavelength 
range of 350–650 nm every 1 nm. The refectance signal was 
referenced to a measurement made with the probe placed in 
the input port of an integrating sphere. Data processing of the 
raw signal is necessary to ensure that the absolute signal in-
tensity and spectral shape of the refectance spectrum are ac-
curate. The steps involved include: �i� background subtrac-
tion, �ii� exposure time normalization, �iii� wavelength 
calibration, �iv� data smoothing, and �v� system response cali-
bration and illumination power normalization.25 

4 Study Protocol 
The study protocol was reviewed and approved by the Insti-
tutional Review Boards at the University of Texas M. D. 
Anderson Cancer Center, Rice University, the British Colum-
bia Cancer Agency, and the University of Texas at Austin. 
Details of the clinical study are provided in. Ref. 22. Written 
consent was obtained from all subjects. There are 748 fuo-
rescence and refectance spectral measurements used in this 
analysis, and they account for 615 unique sites in 330 pa-
tients. This data set is a subset of the data collected in a 
multicenter phase II clinical trial; our analysis only includes 
the data measured with one generation of the device used in 
the trial. The diagnostic categories used for analysis were 
Normal �normal epithelium, infammation, metaplasia�, LG
�low-grade, including atypia, HPV-associated change, grade 1 
cervical intraepithelial neoplasia�, CIN2 �grade 2 cervical in-
traepithelial neoplasia�, and CIN3+ �grade 3 cervical intraepi-
thelial neoplasia and cancer�. Table 1 shows the diagnosis and 
tissue type statistics for the data analyzed in this study. The 
classifcation was performed to discriminate Normal and LG 
from CIN2 and CIN3+. 

5 Statistical Analysis 
The training set was split into fve groups to perform fvefold 
cross-validation to estimate the diagnostic performance of the 
algorithm based on the extracted parameters. Principle com-
ponents of the measured spectra were also used as features in 
�4 November/December 2008 Vol. 13�6� 



Redden Weber et al.: Model-based analysis of reflectance and fluorescence spectra for in vivo detection… 

t
r  
w  
S
r  
v  
f  
o
t  
w

F
S
i
p
S
i

J

Table 1 Statistical breakdown of the data by tis

Number of measurements Normal

Tissue type Squamous 302 

Mixed 93 

Columnar 46 

All 441 

he algorithm to compare the performance of the physical pa-
ameters to empirical parameters. Ten principle components
ere obtained from the SD1 refectance spectrum, 10 from the
D3 refectance spectrum, and 10 from 4 concatenated fuo-
escence spectra �excitation from 340–370 nm�; over 99.9%
ariance was accounted for in each case. Forward stepwise
eature selection based on the highest area under the receiver
perating characteristic curve was used to determine the fea-
ure set used in the algorithm. Linear discriminant analysis
as used for classifcation. 

ig. 4 Diffusion-based forward model, P3-Hybrid forward model, 1- a
qNMC1lyr is the one-layer MC simulation for the squamous normal 
nput parameters, SqNDT is the diffusion theory model for SqN inpu
arameters. The legend entries for the high grade dysplasia �HG� inp
D0 for both squamous normal and high grade. Neither diffusion the
s sufficient to model the data. 
ournal of Biomedical Optics 064016-
e and diagnosis. 

Diagnosis 

LG CIN2 CIN3+ All 

56 13 12 383 

98 53 64 308 

9 2 0 57 

163 68 76 748 

6 Results 

In order to determine whether a one-layer model was ad-
equate to describe the refectance spectra, both two-layer and 
one-layer MC simulations were performed for each source-
detector separation. The two-layer simulations were per-
formed at emission wavelengths from 350 to 650 nm in 
10-nm increments. The one-layer simulations were performed 
in 1-nm increments from 350 to 650 nm. All the simulations 
included 108 photons, and three simulations were averaged 

yer MC simulations are compared for all source-detector separations. 
nput parameters, SqNMC2lyr is the two layer MC simulation for SqN 
eters, and SqNP3 is the P3-Hybrid forward model for the SqN input 

meters are defined similarly. The differences are very small except at 
 P3-Hybrid is expected to be valid at SD0. A one-layer stroma model 
sue typ

 

nd 2-la
�SqN� i
t param
ut para
ory nor
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ig. 5 Validation of one-layer MC and diffusion-based models agains
pectra are normalized at emission wavelength of 500 nm to an avera
GCD is the HG clinical data. 

or each wavelength. The standard deviation of the three
imulations was orders of magnitude lower than the average.
s the results in Fig. 4 indicate, at the source-detector �SD�

eparation values measured here, the epithelium makes mini-
al contribution to the detected signal. All further refectance
odeling was done assuming tissue could be described as a

ingle layer with optical properties of stroma. 
Figure 4 compares the results of the MC models to the two

nalytical models of refectance at each source-detector sepa-
ation. The diffusion theory forward model is used to set the
cale; normalization occurs at 500 nm. A scale factor is de-
ermined for the normal and high-grade cases separately and
he average of the two is used to scale the MC and P3-Hybrid
pectra. All four models are in good agreement for all SD
eparations, except for SD0. This is expected because for
D0, the transport albedo is low and the SD separation is only
.25 mm. Because both forward models adequately describe
he shape of the MC simulations with good agreement, the
impler diffusion-based model was chosen for further analy-
is. 

Figure 5 compares the results of the one-layer MC simu-
ation, the diffusion theory forward model, and the average
linical data for both squamous normal and high-grade pre-
ancer. For clarity, the standard deviation of the average clini-
al data is not shown in Fig. 5, but for reference, the standard
eviation for the squamous normal clinical data at 500 nm for
D1 is 0.0134. Again, except for SD0 �SD separation 0�, the
odels and clinical data are in good agreement and show
ournal of Biomedical Optics 064016-
	

o clinical measurements for both squamous normal and high grade. 
e SqN and HG forward models. SqNCD is the SqN clinical data and 

separation between spectra of normal tissue and high-grade 
precancer. 

In order to validate that refectance spectra could be ft to 
this analytical expression to accurately extract tissue optical 
properties, spectra generated using MC simulations were ft to 
this expression. The parameters extracted from the inverse 
model ft to the MC simulation were compared to the input 
parameters of the MC simulation. Figure 6 shows the fts to 
the MC simulations for SDa, SDb, SD1, SD2, and SD3 for 
squamous normal as well as high-grade input parameters. The 
extracted parameters are plotted in Fig. 7. The median value 
of the percent difference between input and output spectra for 
all the extracted parameters is 10.6%; parameters extracted 
from the inverse model capture the expected differences be-
tween squamous normal tissue and high-grade precancer. 

The inverse refectance model was used to ft 748 clinical 
measurements of tissue refectance. The ft parameters were 
the volume fraction of blood �vf�blood�	 , the hemoglobin 
oxygen saturation �O2Sat , the concentration of structural 
protein ��protein � , and two constants describing the strength 
�A� and shape �b� of the scattering in the stroma. Using these 
parameters as input, the fuorescence model was applied to 
extract the remaining fuorescence parameters. Box plots of 
selected extracted parameters are shown in Fig. 8. The clinical 
data are separated into fve groups based on the type of tissue 
and stage of disease for the measurement: squamous normal, 
mixed squamous and columnar normal, columnar normal, all 
tissue types with CIN2, and all tissue types with CIN3 or 
t in viv
ge of th
�6 November/December 2008 Vol. 13�6� 
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ig. 6 Results of applying the inverse model to the MC-generated spe
etector separations greater than SD0. The fit is extremely good in al

ancer. Figure 8�a� shows the median epithelial scattering co-
ffcient; this parameter increases from squamous normal to
igh-grade disease, but is also increased in columnar tissue.
igure 8�b� shows the concentration of protein in the stroma;
quamous normal tissue has lower concentrations of protein,
hereas both columnar tissue as well as high grade precancer
ave higher stromal protein concentrations. Figure 8�c� shows
he concentration of keratin in the epithelium; it is higher in
quamous normal than in columnar tissue and precancer. Fig-
re 8�d� shows the concentration of NADH in the epithelium;
he concentration is higher in columnar tissue than in squa-

ous normal and precancer. 

ig. 7 Comparison of extracted optical properties after fitting the Mon
aptures the increase in absorption with disease, both with increase in 
y a decrease in A as well as a decrease in O Sat. The trends are co
2

ournal of Biomedical Optics 064016-
r both squamous normal and high-grade input parameters at source-
 

Using fvefold cross-validation, a simple linear discrimi-
nant classifcation algorithm was developed and used to clas-
sify the measurements based on the extracted inverse adjoint 
model parameters as features. The resulting receiver operating 
characteristic �ROC� curve is shown in Fig. 9. An ROC curve 
was also generated for a per-patient classifcation. These 
curves were generated using the worst diagnosis based on 
pathology as the gold standard and the highest posterior prob-
ability from the classifcation algorithm as the prediction. To 
compare the diagnostic performance of the adjoint model pa-
rameters to empirical parameters, the ROC curve achieved 
using principal components �PCs� of the spectra is also 

lo generated spectra with known input optical properties. The model 
d� and increase in �protein�. The decrease in scattering is also evident 
 for all five source-detector separations evaluated. 
ctra fo
l cases.
te Car
Vf�bloo
nsistent
�7 November/December 2008 Vol. 13�6� 
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ig. 8 Example boxplots of optical properties extracted from in vivo c
re squamous normal �SqN�, mixed squamous and columnar normal 
CIN2�, and grade 3 cervical intraepithelial neoplasia and cancer �CIN
Protein� from the stroma extracted from the reflectance spectra, �c� �
rom the fluorescence spectra. 

hown. Also plotted in Fig. 9 are the sensitivity and specifci-
ies for selected spectroscopy and imaging studies reported in
ef. 11. 

 Discussion and Conclusions 
he adjoint refectance and fuorescence model presented here
rovides a means to interpret the detected spectroscopic
hanges associated with neoplastic progression. The model
ccurately extracts twelve parameters; fve from the refec-
ance spectra and seven from the fuorescence spectra. The
efectance parameters are the volume fraction of blood, the
emoglobin oxygen saturation, the concentration of structural
rotein, and two constants describing the strength and shape
f the scattering in the stroma. The fuorescence parameters
nclude the scattering coeffcient of the epithelium and six
uorophores concentrations: NADH, FAD, keratin, and three

ypes of collagen. By extracting these parameters from in vivo
linical data, an understanding of the biochemical changes
ccurring with neoplastic progression can be realized. 

In addition, the optical properties extracted with the adjoint
odel can be used for classifcation of lesions. In order to

valuate the use of the adjoint model parameters as classif-
ation features the performance of the classifcation algorithm
ournal of Biomedical Optics 064016-
data. Scale chosen may exclude some outliers. The categories shown 
�, columnar normal �ColN�, grade 2 cervical intraepithelial neoplasia 
� �s from the epithelium extracted from the fluorescence spectra, �b� 

� extracted from the fluorescence spectra, and �d� �NADH� extracted 

using the adjoint model parameters was compared to the per-
formance if principle components were used as features in-
stead. The per measurement classifcation performance was 
better for the adjoint model parameters than for principle 
components for our data set �Fig. 9�. This implies that the 
model extracts parameters that are biologically signifcant 
without giving up diagnostic potential available by empirical 
means of data reduction. Physically based models that are 
valid for shorter SD separations, including SD0, are needed to 
fully capitalize on the data available from this study. The sig-
nal from the shorter SD separations might also lead to better 
discrimination of normal and abnormal tissues. 

Reported results of fve other studies of optical spectros-
copy in the cervix are plotted in Fig. 9 for comparison to our 
results.4,26–29 Chang et al. reported a sensitivity and specifcity 
of 83 /80% per patient in an analysis of subsets of data from 
a phase II trial; the analysis results were based on 161 patients 
using combined refectance and fuorescence spectroscopy.26 

Georgakoudi et al. reported a sensitivity and specifcity of 
92 /71% per site in a combined refectance and fuorescence 
spectroscopy pilot study involving 44 patients.4 Ferris et al. 
reported a sensitivity and specifcity of 97 /70% per patient in 
a multispectral phase I trial.27 DeSantis et al. reported a sen-
linical 
�MixN
3+�: �a

keratin
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ig. 9 ROC curve generated from posterior probability output of lin-
ar discriminant analysis-based algorithm performed on 748 measure-
ents from 330 patients. Separate ROC curves are also generated

ased on the posterior probability of each measurement and each
atient. In the case of the patients, the worst diagnosis is used as well
s the worst posterior probability. Results from other studies are
hown with the number of patients used in the analysis �Ref. 11�. 

itivity and specifcity of 95 /55% per patient in a phase II
rial where 572 patients were evaluated.28 Huh et al. reported
 sensitivity and specifcity of 92 /50% per patient in a 604
atient phase II trial using wide-feld multispectral imaging.29

n general, diagnostic performance decreases as the study
ample size increases. In our study, the sensitivity and speci-
city achieved relative to a per measurement gold standard of
istopathology are 85 /51%; this is increased slightly to
5 /53% for a per patient diagnosis. These classifcation re-
ults compare favorably to other studies of optical technolo-
ies for detection of cervical cancer and its precursors. 
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