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Abstract: 

Although the oral cavity is easily accessible to inspection, patients with oral 

cancer most often present at a late stage, leading to high morbidity and mortality.  

Autofluorescence imaging has emerged as a promising technology to aid clinicians in 

screening for oral neoplasia and as an aid to resection, but current approaches rely on 

subjective interpretation. We present a new method to objectively delineate neoplastic 

oral mucosa using autofluorescence imaging.   

Autofluorescence images were obtained from 56 patients with oral lesions and 11 

normal volunteers.  From these images, 276 measurements from 159 unique regions of 

interest (ROI) sites corresponding to normal and confirmed neoplastic areas were 

identified. Data from ROIs in the first 46 subjects was used to develop a simple 

classification algorithm based on the ratio of red-to-green fluorescence; performance of 

this algorithm was then validated using data from the ROIs in the last 21 subjects.  This 

algorithm was applied to patient images to create visual disease-probability maps across 

the field of view. Histologic sections of resected tissue were used to validate the disease-

probability maps.  

The best discrimination between neoplastic and non-neoplastic areas was obtained 

at 405 nm excitation; normal tissue could be discriminated from dysplasia and invasive 

cancer with a 95.9% sensitivity and 96.2% specificity in the training set and with a 100% 

sensitivity and 91.4% specificity in the validation set.  Disease probability maps 

qualitatively agreed with both clinical impression and histology. 

Autofluorescence imaging coupled with objective image analysis provided a 

sensitive and non-invasive tool for the detection oral neoplasia.   
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Introduction 

Head and neck cancer, including cancers of the oral cavity, currently ranks as the 

sixth most common malignancy in the world.  There were more than 270,000 new cases 

of oral cancer reported in 2002 1. Approximately 60% of these individuals present with 

stage III or IV disease, and about half will die within five years of diagnosis 2. Screening 

individuals at risk for oral cancer and its precursors has the potential to improve early 

detection, providing the opportunity to intervene when treatment is most effective.  In 

addition, surveillance of patients who have survived their initial oral cancer is important 

to identify local recurrences and second primary oral tumors, which occur at a higher rate 

than for any other tumor 3,4. 

Conventional oral examination using incandescent white light is the current 

standard of care for screening and surveillance for oral cancer and precancerous lesions.  

The sensitivity of visual examination is limited by several factors including the 

experience and index of suspicion of the examiners. In primary care situations, cases of 

malignancy may be seen rarely and clinicians may have difficulty discriminating the 

sometimes subtle mucosal changes associated with premalignant lesions and early 

cancers from more common benign inflammatory conditions 5. Furthermore, it can be 

challenging to delineate the boundaries of neoplastic lesions using conventional oral 

examination making the choice of a biopsy location difficult.  

Several new approaches have been proposed to address the limitations of the 

conventional oral examination, including the use of toluidine blue, brush cytology, 
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reflectance visualization after acetic acid application, and illumination with a chemi-

luminescent light source.  While useful in certain situations, each of these approaches is 

associated with a high rate of false-positives 5-8 . Recently, several studies have 

demonstrated that autofluorescence imaging may improve the ability to distinguish 

normal from premalignant and malignant oral tissue 9-15. When tissue is illuminated in the 

ultraviolet-visible region, a portion of photons are absorbed by molecules within the 

tissue called fluorophores which then emit lower energy photons that can be detected as 

fluorescence from the mucosal surface. Examples of fluorophores which produce 

autofluorescence signals in tissue include NADH and FAD in the epithelial layer, and 

collagen and elastin crosslinks in the stroma 16. In comparison to normal oral tissue, 

neoplastic lesions are associated with a decrease of green fluorescence when excited with 

ultraviolet (UV) or near-UV light 9,10,12,17 that is attributed to decreased signal from 

collagen crosslinks in the stroma 18. Increased red fluorescence has also been observed 

by several groups in oral lesions and is frequently attributed to porphyrins 19. Several 

groups have proposed that this perceived loss of green fluorescence and increase in red 

fluorescence can be useful as a diagnostic aid to help detect and diagnose early neoplastic 

disease in several anatomic sites including the oral cavity, bronchus, cervix, esophagus 

and colon 13,20-23. In addition, the changes in fluorescence may aid in surgical resection by 

delineating the extent of neoplastic changes beyond the clinically apparent margins 9,10. 

Recently, the U.S. Food and Drug Administration approved an autofluorescence 

imaging device for early detection of oral neoplasia.  The device, marketed as the 

VELscope® (LED Dental, Inc., White Rock, BC, Canada), uses a blue/violet light (400 – 
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460 nm wavelengths) to illuminate oral tissue and long pass and notch filters to enable 

clinicians to directly visualize fluorescence in the oral cavity 9,13. The VELscope and 

other proposed fluorescence imaging devices rely on qualitative observations to detect 

and delineate neoplastic oral lesions and therefore reliable screening with these 

instruments necessitates well-defined and standardized image interpretation criteria, and 

appropriate user training. This may not be feasible in many primary care situations.  We 

hypothesize that the application of digital image processing techniques to 

autofluorescence imaging of oral tissue will provide the ability to objectively identify and 

delineate the peripheral extent of neoplastic lesions in the oral cavity.  This will provide a 

powerful tool in patient care locations where experts are not available or where 

physicians encounter few cases of malignant and premalignant neoplasia.  Low-cost 

digital cameras with sufficient sensitivity to record tissue autofluorescence in near real 

time are now readily available 24, making clinical application of such automated image 

processing feasible. 

The primary goal of the present study was to evaluate the use of quantitative 

autofluorescence imaging for the detection and delineation of oral neoplastic lesions.  We 

demonstrate that a simple, objective method can be used to accurately classify regions of 

interest within an autofluorescence image with 100% sensitivity and 91.4% specificity 

relative to histopathology. This method can delineate the presence and extent of 

neoplastic lesions within a field of view and provide results which correlate with the 

histopathologic assessment of extent of disease.  Thus, quantitative autofluorescence 
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imaging may provide a non-invasive and objective method to improve screening and 

margin delineation of oral cancers and precancers.  

Methods 

Human Subjects 

Study subjects were enrolled in a clinical protocol reviewed and approved by the 

Internal Review Boards at The University of Texas MD Anderson Cancer Center and 

Rice University.  Patients were eligible and recruited if they were 18 years of age or 

older and had known or suspected precancerous or cancerous squamous lesions located in 

the oral mucosa.  Patients may have had previous surgical, radiation, or chemotherapeutic 

treatments.  Normal volunteers were eligible and recruited if they were 18 years of age or 

older and had no history of oral pathology.  All subjects enrolled in the study gave 

written informed consent.  The average age of patients in this study was 59,  42% of the 

patients were female and 58% were male.  The average age of normal volunteers in this 

study was 27.4, 27% were female and 73% were male. 

Imaging Procedure 

Autofluorescence images were obtained from the oral cavity of 56 patients with 

clinically abnormal lesions and 11 normal volunteers.  Data were divided into a training 

set and a validation set. Data acquired from the first 39 patients and 7 normal volunteers 

imaged between June 2006 and January 2008 were allocated to the training set and used 
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to develop an algorithm for detection of neoplasia.  Data acquired from the subsequent 17 

patients and 4 normal volunteers imaged between March and June 2008 formed a 

validation set and were used to test the performance of this algorithm relative to 

histopathology. 

White light and autofluorescence images were obtained at 365 nm, 380 nm, 405 

nm, and 450 nm excitation using a Multispectral Digital Microscope (MDM).  This 

device is described in detail elsewhere 25 but briefly, the MDM is a wide-field optical 

microscope which collects digital autofluorescence and reflectance images with a color 

CCD camera from a variable field of view, ranging in size from approximately 1 to 7 cm.  

Patients were imaged either in an outpatient clinic or in the operating room under general 

anesthesia prior to surgery.  A physician positioned the patient and microscope so that the 

suspicious lesion or area of interest was clearly in the field of view of the device.  

Clinically normal areas distant from or contralateral to the lesion were also imaged.  

Following imaging in the clinic, suspicious lesions were biopsied. In the operating room, 

previously biopsied lesions were surgically resected.   

Histopathologic Correlation 

Biopsies and resected tissues were evaluated using standard histopathologic 

analysis by a board certified pathologist (either AEN or MDW).  The location of 

biopsies and resected lesions was recorded using digital photography so that pathology 

results could later be correlated to multispectral imaging results.  In addition, the 

locations of gross anatomical features were noted in both autofluorescence images and 
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histology specimens to aid in correlation.  The resulting histopathology sections were 

evaluated to provide a diagnosis along the entire length of the epithelium, also noting any 

submucosal abnormalities in each slide.  Histopathology diagnosis included the following 

categories: normal, mild dysplasia, moderate dysplasia, severe dysplasia/carcinoma in 

situ, and invasive carcinoma.  For the purposes of diagnostic algorithm development, two 

major categories were defined: normal tissue (including inflammation and hyperplasia) 

and neoplastic tissue (including dysplasia, carcinoma in situ and cancer).   

Analysis and Statistical methods 

Images were preprocessed to subtract signal from ambient room light and 

translated so that white light and fluorescence images of the same field of view were 

spatially registered. 276 measurements corresponding to 159 unique regions of interest 

(ROIs) sites of clinically normal and suspicious regions of tissue were selected from 

white light images by a head and neck surgeon (AMG) blinded to the results of the 

autofluorescence imaging.  In some cases, repeat measurements were obtained from the 

same ROI site to help ensure image data was collected without motion artifacts; often 

both the first and repeat measurements were included in the analysis.  These repeat 

measurements account for the difference between the number of measurements and the 

number of ROI sites.  Heterogeneity in pathologic diagnoses may occur within relatively 

small areas of diseased oral mucosa 26,27 so ROIs were stringently selected from 

suspicious areas using one of following four criteria:  1) areas corresponding to the same 

size and location as a biopsy with a pathological diagnosis, 2)  ROIs from locations 
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which could be correlated to a histopathology slide with a corresponding pathological 

diagnosis, 3) areas within well-defined exophytic tumors confirmed by pathological 

diagnosis and 4) ROIs from a location which was clinically normal and deemed by the 

physician to be sufficiently distant from the lesion.  

Autofluorescence images from the training set were analyzed to determine 

whether specific image features could be used to classify a measurement site as normal or 

neoplastic.  The autofluorescence images and white light images were spatially registered 

so that the ROIs chosen in the white light images corresponded to the same region of 

tissue in the autofluorescence images.  The training set included data from the first 39 

patients and 7 normal volunteers and included measurements from 173 measurements 

from 102 unique ROIs.  Qualitatively, neoplastic ROIs were associated with a decrease in 

average green fluorescence intensity and often an increase in red fluorescence intensity. 

The mean ratio of red-to-green pixel intensities inside each of the ROIs was calculated 

from the fluorescence images at each excitation wavelength.  Red and green pixel 

intensities were obtained from the collected Red-Green-Blue color images, created by the 

Bayer color mask on the CCD detector.  A classifier was developed to distinguish 

neoplastic and normal ROIs using linear discriminant analysis with the single input 

feature of average ratio of red-to-green fluorescence.  When more than one measurement 

corresponded to a ROI site, the mean of the feature values was used for classification.  

The classifier was trained using all of the ROI sites in training set and the prior 

probability input into the classifier was chosen to represent the percentage of abnormal to 

normal measurements in the data set.  The classifier was developed after images were 
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acquired from patients in the training set but before measurements were acquired from 

patients in the validation set.  Classifier accuracy in the training set was assessed by 

plotting the receiver operating characteristic (ROC) curve, the area under the ROC curve 

(AUC), and the sensitivity and specificity at a particular operating point on the ROC 

28-30 curve . The positive and negative predictive values were also calculated at the 

operating point. Confidence intervals were calculated for operating characteristics using 

the Wilson ‘score’ method including a continuity correction 31. 

The algorithm was then applied to data from the validation set using the red-to-

green ratio threshold found to produce the highest combination of sensitivity and 

specificity in the training set.  The validation set was designed to rigorously test the 

algorithm and for most patients, ROI and biopsy pairs were collected on the clinical 

margins of the lesion in addition to directly on the lesion and in clinically normal areas.  

The validation set included 103 measurements from 57 unique ROIs in a second group of 

17 patients and 4 normal volunteers.  

An additional analysis step was explored to increase the performance of the 

classifier by normalizing the red-to-green ratio measurements for each patient.  An 

additional unique and non-overlapping ROI of clinically normal tissue was chosen from 

the same anatomical site and in the same field of view for each of the ROIs described 

above. At each excitation wavelength, the mean red-to-green autofluorescence ratio was 

calculated in this ROI; the mean red-to-green ratios from the other ROIs were normalized 

by this value. This method provides a way to compensate for anatomical and patient to 
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patient variations in red-to-green fluorescence intensity ratio.  Identical statistical analysis 

was performed using this measured feature with both the training set and the validation 

set. The method utilizing the magnitude of the red-to-green fluorescence intensity ratio is 

termed the raw red-to-green method and the method utilizing a normalized red-to-green 

fluorescence intensity ratio is termed normalized red-to-green method. 

Disease Probability Maps 

The classification algorithms described above provided a relationship between the 

magnitude of the red-to-green fluorescence intensity ratio for a particular region of 

interest within the image and the probability of that region having a diagnosis of 

abnormal.  This relationship was used to predict the probability of a diagnosis of 

dysplasia or cancer for each pixel in an image, given the red-to-green fluorescence 

intensity ratio at that pixel.  The posterior probability values at each pixel in the image 

were computed and pixels which corresponded to a 50% or greater probability of being 

classified as dysplastic or cancerous were color coded and digitally overlaid onto the 

white light images.  This method provides a means to illustrate areas of tissue with the 

highest probability of being neoplastic.  The assumption was made that the region of 

interest method described above could be generalized on a pixel by pixel basis.  Disease 

probability maps were compared to histologic images of tissue resected from the field of 

view to confirm the accuracy of this method. 
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Results 

Tables 1 and 2 summarize the anatomic site and histopathologic diagnoses of the 

159 sites included in this analysis. The most common sites were tongue, buccal mucosa  

and floor of mouth, followed by palate, lip, and gingiva. The training set contained 52%  

normal, 28% dysplastic, and 20% invasive carcinoma sites while the validation set 

contained 61% normal, 26% dysplastic, and 12% invasive carcinoma sites.  The normal 

histopathologic category could include tissue with hyperkeratosis, hyperplasia, and/or 

inflammation as long as there was no dysplasia or carcinoma.  The normal sites in the 

training set, based on available pathology (not including normal volunteers and normal 

sites where no biopsy was taken), included 7 sites (13.2% of normal sites) with 

hyperplasia and hyperkeratosis, 4 sites (7.5% of normal sites) with hyperkeratosis, and 3 

sites (5.7% of normal sites) with hyperplasia and/or fibroadipose tissue.  The validation 

set included 3 sites (8.6% of normal sites) with hyperplasia and hyperkeratosis, 1 sites 

(2.9% of normal sites) with hyperplasia, 1 site (2.9% of normal sites) with a submucosal 

hemorrhage, and 1 site (2.9% of normal sites) with marked inflammation and 

osteonecrosis. The abnormal histopathology category could include dysplasia and 

carcinoma.  In the training set 59.2% of the abnormal sites were premalignant (mild, 

moderate, or severe dysplasia), in the validation set 68.2% of the abnormal sites were 

premalignant.   

Figure 1 shows white light and autofluorescence images from the buccal mucosa 

of a patient with pathologically confirmed invasive carcinoma.  The white light image 
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(Fig. 1A) shows two ROIs, one which corresponds to a pathologically confirmed invasive 

carcinoma, and the other which was clinically normal and outside of the pathologically 

confirmed clear resection margin.  Figures 1B-1D show autofluorescence images at 

different excitation wavelengths that were taken before surgery from the same field of 

view. The autofluorescence image obtained at 405 nm excitation qualitatively shows the 

greatest visual contrast between the normal and neoplastic ROI.  This observation was 

typical for study patients. 

Table 3 summarizes the performance of both diagnostic algorithms, based on 

either the raw or the normalized mean red to green fluorescence intensity ratios, for 

classifying lesions in the training set.  At each excitation wavelength, the classifier that 

used the normalized red-to-green fluorescence intensity ratio (Normalized R/G ratio) had 

slightly higher AUC than the algorithm based on the raw red/green fluorescence intensity 

ratio (Raw R/G ratio). In all cases, the highest AUC was obtained at 405 nm excitation.  

The sensitivity and specificity values at the point on the ROC curve nearest the gold 

standard (Q-point) are also reported in Table 3.    

A scatter plot of the normalized red-to-green ratio at 405 nm excitation for each of 

the 102 sites in the training set, as well as the threshold of 1.19 used in the classification 

algorithm is shown in Figure 2A.  Of the 102 sites, 4 were misclassified including one 

site of fibroadipose tissue on the lower lip misclassified at abnormal, one hyperkeratotic 

site on the right buccal misclassified at abnormal, one cancer site on the right lateral 

tongue misclassified as normal, and one site on the left soft palate with focal ulceration 
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and dysplasia misclassified as normal. Figure 2B shows the ROC curve for this classifier; 

the AUC is 0.988, and at the Q-point, the sensitivity is 95.9% (95% confidence interval 

(CI) 84.9% - 99.3%) and the specificity is 96.2% (95% CI 85.9% - 99.3%).  The positive 

predictive value is 95.9% (95% CI 84.9% - 99.3%) and the negative predictive value is 

96.2% (95% CI 85.9% - 99.3%). This operating point is indicated on the ROC curve. 

The algorithm using the normalized red-to-green fluorescence intensity ratio at 

405 nm excitation was applied to the validation set.  In Figure 2C a scatterplot of the 

normalized R/G ratio for each site in the validation set is shown along with the threshold 

that had been previously selected for the training set. Figure 2D depicts the ROC curve 

with the operating point selected for the training set indicated.  A 100% sensitivity (95% 

CI 81.5% - 99.6%) and 91.4% specificity (95% CI 75.8% - 97.8%) and an AUC of .987 

were achieved at this operating point for the validation set.  The positive predictive value 

is 88.0% (95% CI 67.7% - 96.9%) and the negative predictive value is 100% (95% CI 

86.7% - 99.7%). Of the 57 sites in the validation set, 3 were misclassified as abnormal 

including one site on the left buccal with hyperplasia, one site on the right buccal, and 

another site on the left buccal.  

Figure 3 shows white light and 405 nm excited autofluorescence images from a 

study patient with moderate dysplasia and carcinoma in situ located in the floor of mouth.  

The white light image is also shown with an overlay of the calculated disease probability 

map; regions corresponding to a predictive probability of a neoplastic lesion greater than 

50% are shaded as indicated by the color bar.  The disease probability map indicates the 
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probability that a particular pixel in the image corresponds to a neoplastic area of tissue. 

Histologic sections obtained at six areas in the tissue are also shown.  Only one of these 

areas was included in the previous classification analysis.  The disease probability map 

shows qualitative agreement with the presence of dysplasia and cancer in the areas 

corresponding to the histologic sections. 

Figure 4 shows representative white light images with and without superimposed 

disease probability maps from four study patients.  Images in the first three rows 

correspond to patients with histologically confirmed neoplasia, while the image in the 

bottom row is from a normal volunteer with no clinically suspicious lesions.  Although 

the lesion in Figure A is obvious, those in Figures B and C are less so, highlighting the 

potential to aid clinicians in identifying the presence of neoplasia and identifying optimal 

sites for further evaluation with biopsy. Images in Figures 4A and B are from a patient 

with an invasive carcinoma in the floor of mouth.  Images in Figures 4C and D are from a 

patient with a region of severe dysplasia on the tongue.  The images in Figures 4E and F 

are from a patient with a region of moderate dysplasia on the gingiva.    In all three cases, 

the disease probability map delineates the suspicious regions identified clinically by an 

oral cancer specialist blinded to the results of the autofluorescence imaging and are 

consistent with histopathologic sections obtained.  Figures 4G and H are from the inner 

lip of a normal volunteer and the disease probability map does not indicate any lesions.   
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Discussion 

Our results illustrate how autofluorescence imaging may enhance the ability of 

clinicians to detect and delineate areas of oral dysplasia and carcinoma. Although all four 

illumination conditions tested allowed visualization of changes in autofluorescence with 

neoplasia, illumination with 405 nm wavelength produced the highest discriminatory 

capability. This corresponds to previous findings comparing illumination wavelengths 

for autofluorescence imaging in freshly resected oral cancer surgical specimens 17. While 

subjective interpretation of loss of autofluorescence has been shown to be useful 9,13, 

there are several important advantages associated with objective and quantitative analysis 

of changes in autofluorescence signal. First, quantitative analysis methods provide a 

rigorous and repeatable way to determine the threshold for demarcating a lesion, even for 

providers with less experience. Second, digital imaging allows the operator to save and 

process images, directly comparing data from multiple patients in a series or from a 

single patient over time.  Third, ratios of fluorescence intensity values provide a way to 

reduce variations in images associated with spatial non-uniformities in illumination.  

  In the present study, the performance of a simple classifier based on the ratio of 

red-to-green autofluorescence intensity at 405 nm excitation was tested and found  to 

discriminate neoplastic and non-neoplastic tissue with a sensitivity and specificity of 96% 

in the training set and 100% sensitivity and 91.4% specificity in the validation set.  These 

results compare favorably with the performance of visual oral examination, which has 

been systematically reviewed by Downer et al 32. Downer identified eight prospective 

studies between 1980 and 2002 that involved conventional oral exam with gold standard 
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verification provided by an expert observer. In four of the studies the screeners were 

general dentists and in four of the studies the screeners were trained health workers. 

Sensitivity ranged from 59% to 97%, specificity ranged from 75% to 99%, and meta-

analysis resulted in a weighted pooled sensitivity of 85% and a specificity of 97%. Other 

reports of the performance of visual oral screening include Sankaranarayanan et al 

(sensitivity 77%, specificity 76%) 33, Ramadas et al (sensitivity 82%, specificity 85%) 34, 

and Nagao et al (sensitivity 92%, specificity 64%) 35. The classifier in this study can be 

applied to entire images of the oral cavity to visualize areas with a high probability of 

being neoplastic; disease probability maps are consistent with histologic sections 

obtained from tissue in the field of view. 

Autofluorescence imaging has shown great promise for enhancing visualization of 

neoplastic areas in recent studies 9,10,13-15,17 . In a study of 44 patients, Lane et al. 

demonstrated high sensitivity and specificity at discriminating normal oral mucosa from 

severe dysplasia, carcinoma in situ, or invasive carcinoma based on visual assessment of 

loss of autofluorescence in diseased mucosa at excitation wavelengths between 400 nm 

and 460 nm 13. In another study by the same group, the potential for autofluorescence 

imaging to enhance delineation of the margins of neoplastic changes was demonstrated.  

In some cases fluorescence loss extended as far as 25 mm beyond the clinically apparent 

margin 9. Autofluorescence endoscopic imaging technologies for lung and the GI tract 

utilizing ratios of red and green signal have been available for over a decade and have 

greatly increased sensitivity of disease detection in these organ systems 20,36-38. The 

LIFETM (laser induced fluorescence emission) system is an autofluorescence 

17 



 

 

 

bronchoscopy device which provides the user with a real time image in which changes in 

hue correspond to suspicious and/or abnormal areas.  Users of the device must be trained 

in order to interpret these changes in image hue 37. 

A potential confounding factor which may limit specificity of classifiers based on 

the red-to-green fluorescence intensity ratio for automated image analysis software is the 

frequent presence of red fluorescence on normal papillae of the dorsal aspect of the 

tongue. At 405 nm excitation, increased fluorescence above 600 nm emission has been 

observed in oral lesions and is thought to originate from porphyrins, although it is 

uncertain whether the origins of these porphyrins are intrinsic or derived from bacterial 

contamination 39. Red porphyrin-like fluorescence has been shown to correlate with 

neoplastic disease in other regions of the oral cavity 10,39. However, normal red 

fluorescence is limited to the dorsal tongue; it is not observed on normal areas on the 

lateral and ventral tongue where there is a much higher propensity for developing 

neoplastic disease 40. In this study, a single site in the training set was imaged on the 

dorsal tongue and corresponded to cancer.  Bright red fluorescence was visible at this site. 

Our results demonstrate the potential of quantitative fluorescence imaging as an 

objective approach to non-invasively identify and delineate the mucosal extent of 

neoplastic lesions in the oral cavity.  It should be noted that the images were obtained 

with a research-grade device and the disease probability maps described here were 

constructed subsequent to the image acquisition and compared to only a limited number 

of sites with diagnosis confirmed with histopathology.  Unfortunately, it is difficult to 
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obtain pathology diagnosis for the entire surface of a resected specimen. Additionally, in 

order to provide optimal benefit to clinicians both for detection and margin delineation of 

oral dysplasia and carcinoma, these disease probability maps need to be available to view 

in real or near real-time. We are currently making software improvements and developing 

quantitative fluorescence imaging devices that can show false color disease-probability 

maps based on red/green fluorescence intensity ratios at 405 nm excitation at the time of 

the examination. In addition, we recognize that our results were obtained from a small 

group of subjects with disease prevalence that might be expected in a treatment 

population rather than a screening population. Future studies are planned to evaluate this 

method of quantitative fluorescence imaging in community settings in a larger subject 

group with a wide spectrum of oral pathologies including oral dysplasia and early 

invasive disease, benign conditions and inflammation. 

In summary, the present study provides proof-of–principle for the use of a 

practical tool for the quantitative fluorescence imaging as an objective technique for 

detection and delineation of oral neoplasia.  The use of objective disease probability maps 

represents an important advance toward integration of optical imaging technologies into 

the clinical practice of dentists and primary health care workers. Development of non-

invasive and objective diagnostic aids based on these findings may facilitate early 

detection and diagnosis of oral cancer and its precursors by less experienced personnel at 

the point of care. 
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Tables 

Table 1. Anatomic sites of ROIs in the training and validation set.  Note: Percentages 
may not add up to 100 % because of rounding. 

Table 2. Pathology diagnosis of ROI sites in training and validation set. 
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Table 3. Classification results at each fluorescence excitation wavelength using both the 
Raw R/G Ratio method and the Normalized R/G ratio method in the training set. 

Figure Legends 

Figure 1. Autofluorescence and white light images of the buccal mucosa of a typical 

study patient. A. White light image showing regions of interest of histopathologically 

confirmed normal tissue and invasive carcinoma.  B. Fluorescence image at 365 nm 

excitation. C. Fluorescence image at 405 nm excitation. D. Fluorescence image at 450 

nm excitation.   

Figure 2. A. Scatter plot of normalized red-to-green ratios at 405 nm excitation for the 

102 ROI sites in the training set. The horizontal line indicates the threshold used to 

obtain 95.9% sensitivity and 96.2% specificity.  Note that 2 additional abnormal data 

points had a red-to-green fluorescence intensity ratio greater than 3 but are not shown on 

this plot. B. Receiver-operating characteristic (ROC) curve of the classifier based on the 

normalized red-to-green ratio.  The operating point used for classification is indicated by 

24 



 

 

 

 

 

 
 
 
 
 

a dot and arrow. C. Scatter plot of the red-to-green ratio for the 57 sites in the validation 

set with threshold selected from the training set indicated. Note that 3 additional 

abnormal data points had a red-to-green fluorescence intensity ratio greater than 3 but are 

not shown on this plot. D. ROC curve obtained for the validation set.  The operating point 

is indicated and corresponds to the threshold chosen from the training set.   

Figure 3. A. White light image of floor of mouth with histopathologically confirmed 

dysplasia and carcinoma in situ.  B. 405 nm excitation fluorescence image showing areas 

with deceased autofluorescence.  C. White light image with disease probability map 

showing the predictive probability of a neoplastic lesion superimposed.  Letters indicate 

specific locations were pathology is known.  The key to the right of C. indicates 

pathology. The histology slides below show tissue sections from these areas.  Marking 

bar at the lower right-hand corner = 1 mm. 

Figure 4. A. and B. show images from a patient with an invasive carcinoma in the floor 

of mouth. A. White light image B. White light image with disease probability mapping 

showing the predictive probability of a neoplastic lesion. C. and D. show images from a 

patient with a region of severe dysplasia on the tongue.  E and F show images from a 

patient with a region of moderate dysplasia on the gingiva.   G. and H. show images from 

inner lip of a normal volunteer.  
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