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Abstract 
BACKGROUND: The development of noninvasive molecular imaging approaches has the potential to improve man-
agement of cancer. METHODS: In this study, we demonstrate the potential of noninvasive topical delivery of an 

epidermal growth factor–Alexa 647 (EGF–Alexa 647) conjugate to image changes in epidermal growth factor re-
ceptor expression associated with oral neoplasia. We report a series of preclinical analyses to evaluate the optical 
contrast achieved after topical delivery of EGF–Alexa 647 in a variety of model systems, including cells, three-
dimensional tissue cultures, and intact human tissue specimens using wide-field and high-resolution fluorescence 

imaging. Data were collected from 17 different oral cancer patients: eight pairs of normal and abnormal biopsies 

and nine resected tumors were examined. RESULTS: The EGF-dye conjugate can be uniformly delivered through-
out the oral epithelium with a penetration depth exceeding 500 μm and incubation time of less than 30 minutes. 
After EGF–Alexa 647 incubation, the presence of oral neoplasia is associated with a 1.5- to 6.9-fold increase in fluo-
rescence contrast compared with grossly normal mucosa from the same patient with both wide-field and high-
resolution fluorescence imaging. CONCLUSIONS: Results illustrate the potential of EGF-targeted fluorescent agents 

for in vivo molecular imaging, a technique that may aid in the diagnosis and characterization of oral neoplasia and 

allow real-time detection of tumor margins. 
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Introduction 
Noninvasive, molecular-specific imaging has the potential to improve 
management of oral neoplasia by allowing characterization of spe-
cific molecular alterations, facilitating the individualized selection 
of therapy, and enabling real-time evaluation of treatment response 
[1–5]. Genetic changes that occur during carcinogenesis lead to al-
tered gene expression and protein levels compared with normal cells. 
A number of promising molecular biomarkers of early oral neoplasia 
have been identified [6–9], including several specific mutations and 
molecular abnormalities that occur during the transition from nor-
mal mucosa to dysplasia to invasive carcinoma [10–12]. These mol-
ecules can serve as biomarkers for early detection strategies and 
follow-up of high-risk individuals. Although these data herald a 
breakthrough for deciphering the mechanisms of oral carcinogenesis, 
they were obtained through analytical techniques requiring tissue 
from invasive biopsies or surgical resections. Unfortunately, there 
are currently no techniques available to rapidly screen for these 
changes at the point-of-care. 
The clinical use of molecular imaging in cancer patients has fo-
cused primarily on positron emission tomography (PET). This uses 
fluorodeoxyglucose or 3′-deoxy-3′-18F-fluorothymidine as contrast 
agents to provide images with molecular information and is now rou-
tinely used for staging and assessment of treatment response in cancer 
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patients [13–15]. Although PET imaging has important clinical ad-
vantages, it has had a limited role in cancer screening and early de-
tection because of its limited spatial resolution and cost associated 
with cyclotron and radioimaging facilities. An additional major draw-
back of PET is radiation exposure to the patient. 
Optical imaging of tissue autofluorescence has emerged as a strat-

egy for detection and diagnosis of oral lesions [16,17] and is favorable 
owing to its ability to image tissue with high spatial (<1 μm lateral 
resolution) and temporal resolution (usually video rate) using low-
cost, portable devices. However, performance of autofluorescence 
imaging systems does not always represent an improvement over 
common white light inspection [18]. Combined fluorescence di-
agnosis using both autofluorescence and 5-aminolevulinic acid– 
induced protoporphyrin IX fluorescence shows improved sensitivity 
and specificity over autofluorescence alone but cannot be performed 
as quickly [18,19]. Permeation of 5-aminolevulinic acid through mu-
cosa is highly variable, especially in the presence of keratin, and as a 
result, keratinized oral lesions, especially those exhibiting hyperkera-
tosis, may be more difficult to diagnose [20]. 
An alternative approach is optical molecular imaging [21–24], 

which combines the advantages of molecular-specific imaging with 
the strengths of optical imaging. For clinical application, a successful 
optical molecular imaging strategy must solve several challenges: it 
must use a contrast agent that can be effectively and safely delivered 
to a target tissue in vivo, and it must yield images of tissue in real 
time with the desired spatial resolution and field of view, with a high 
signal-to-noise ratio. Optical imaging of fluorescent contrast agents 
has been used previously to discriminate cancer cells from normal 
cells, such as the chlorotoxin/Cy5.5 contrast agent [25]. Although 
this agent binds to multiple types of cancer cells, it is not specific 
for a single target. 
The epidermal growth factor receptor (EGFR) is an established 

biomarker for the detection of oral neoplasia [26–29] and also has 
potential prognostic value [30]. Although EGFR is present in prolif-
erating cells in normal tissue [31], there is marked overexpression 
during progression to dysplasia and cancer [32]. An estimated 50% 
to 98% of oral cancers overexpress EGFR [33–37]. The expression of 
EGFR was a strong prognostic indicator for overall and disease-free 
survival in patients with advanced head and neck squamous cell car-
cinoma enrolled in a radiotherapy study and was highly predictive for 
local-regional relapse but not distant metastases [38]. 
The goal of this study was to develop and evaluate the potential of 

a topically delivered optical contrast agent to image EGFR expression 
for use in the early detection of oral neoplasia. We report a series of 
preclinical analyses to assess the potential of topically delivered EGF– 
Alexa 647 for molecular imaging of oral neoplasia; we evaluate the 
resulting optical contrast achieved in cells, three-dimensional tissue 
cultures, paired clinically normal and abnormal biopsies, and surgi-
cally resected oral tumors. High-resolution fluorescence imaging was 
used in biopsy specimens to evaluate the ability of the contrast agent 
to be delivered throughout the epithelium and to quantitatively 
assess image contrast. Wide-field fluorescence imaging was used to 
assess the spatial heterogeneity of EGFR expression in resected tu-
mors and to quantify the increase in fluorescence intensity of abnor-
mal tissue. High-resolution and wide-field imaging of contrast 
provide complementary information that may be useful for a better 
classification of disease state, detection of disease margins, and under-
standing spatial heterogeneity of biomarker expression. Contrast val-
ues achieved in the tissue specimens were compared with the results 
of histopathologic diagnosis and immunohistochemical (IHC) anal-
ysis of EGFR expression. 
Materials and Methods 

Preparation of EGF–Alexa 647 
To prepare EGF–Alexa 647 conjugate, EGF peptide (Calbiochem, 

San Diego, CA) was labeled with Alexa 647–carboxylic ester (Invitrogen, 
Carlsbad, CA) and purified using size exclusion chromatography and 
dialysis. This two-step purification was used to completely remove free 
dye from the labeled peptide; purification was monitored by spectros-
copy. Murine-derived recombinant EGF peptide was used for the stud-
ies in cells, tissue phantoms, and biopsies, and human-derived 
recombinant EGF peptide was used for the resected oral lesions. Con-
trol experiments (including cells and tissue phantoms) were performed 
to ensure these data could be combined. 
Incubation and Imaging of Cells and Tissue Phantoms 
To demonstrate the specificity of EGF–Alexa 647–based contrast 

agent, we incubated two cell lines with the conjugate. The 1483 cells 
(provided by Dr. Lotan, MD Anderson Cancer Center) were selected 
as a representative EGFR-positive cell line, whereas MDA-MB-435 cells 
(ATCC, Manassas, VA) were selected as a representative EGFR-negative 
cell line. The cells were incubated with EGF–Alexa 647 (0.01 mg/ml) 
for 30 minutes at 37°C and imaged live using a Zeiss LSM 510 confocal 
microscope (excitation, 633 nm; emission filter band pass, 650-
700 nm, Carl Zeiss, Inc., Thornwood, NY). To further demonstrate 
specificity of the contrast agent, 1483 cells were first blocked with 1% 
BSA for 30 minutes and then incubated for 1 hour on ice with equimo-
lar amounts of both EGF–Alexa 647 and anti–EGFR antibody (mono-
clonal antibody clone 108, Baylor College of Medicine) labeled with 
Alexa 488 (Invitrogen, CA). In addition, a competition assay was per-
formed in which 1483 cells were incubated for 1 hour on ice with EGF– 
Alexa 647 and unlabeled EGF. Incubation on ice was conducted to limit 
intracellular uptake of EGF receptors. The unlabeled EGF was added in 
concentrations of 0×, 0.1×, 1×, and 10× the molar concentration of 
EGF–Alexa 647. The 1483 cells were also incubated with rhodamine-
labeled 3-kDa dextran, a nonspecific fluorescent agent with a similar size 
as EGF peptide does. Concentration and incubation conditions for cells 
with dextran were identical to cells with EGF–Alexa 647. Appropriate 
power and gain settings to image the rhodamine-labeled dextran with 
the confocal microscope were determined by first imaging a well with 
dextran that had not yet been washed and by adjusting the settings to 
detect a strong fluorescence signal from these wells. These settings were 
then used to image cells that were incubated with dextran and washed. 

To assess the potential ability to topically deliver EGF–Alexa 647, 
a three-dimensional tissue culture system was used. Tissue phantoms 
were prepared by placing a suspension of approximately 10 million 
1483 or 435 cells in a collagen matrix [39]. Phantoms were cultured 
for 24 hours in a cylindrical chamber (Costar Transwell Chambers; 
Corning, Lowell, MA) before subsequent incubation and imaging. 
The EGF-dye conjugate was topically delivered only to the top sur-
face area of the tissue phantom (0.05 mg/ml). After 30 minutes of 
incubation, tissue phantoms were washed in excess medium to remove 
unbound contrast agent. After incubation, tissue phantoms were sliced 
transversely using a Krumdieck tissue slicer (Alabama Research & 
Development; 200-300 μm thick) and imaged using a Zeiss LSM 510 
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confocal fluorescence microscope using the same settings used for 
cell imaging. 
Topical Delivery of EGF–Alexa 647 in Clinical Samples 
To demonstrate the potential of EGF–Alexa 647 to detect oral 

neoplasia, the conjugate was topically applied to fresh tissue samples 
obtained from oral cancer patients. Paired sets of clinically normal 
and abnormal oral biopsies (n = 8) were used initially to ensure trans-
lation of results from cells and tissue phantoms into human tissue. 
Once we confirmed contrast agent binding in biopsies, freshly re-
sected oral tumors (n = 9) were also incubated with the agent and 
analyzed. Patients gave written informed consent to participate, and 
the study was reviewed and approved by the institutional review 
boards at the University of Texas MD Anderson Cancer Center and 
Rice University. EGF–Alexa 647 (0.05 mg/ml concentration in 1× 
phosphate buffered saline, pH 7.4) was topically applied to these tis-
sue samples in the presence of 10% dimethylsulfoxide (DMSO). 
DMSO was used as a permeation enhancer to improve delivery of 
the EGF–Alexa 647 conjugate through the epithelium of these tissue 
Figure 1. (A) EGFR-positive 1483 cells coincubated with EGF–Alexa 6
showing colocalization of fluorescence at the cell membrane. Scale b
Alexa 647 and unlabeled EGF added at concentrations of 0×, 0.1×,
samples [40,41]. Samples were incubated with EGF–Alexa 647 for 
30 minutes, washed with 1× phosphate-buffered saline, and imaged 
using a wide-field fluorescence imaging system with appropriate exci-
tation and emission filters. Wide-field imaging was used to survey the 
tissue because it has a large field of view (∼5 × 7 cm for  these  instru-
ments). The biopsies were imaged with the CRiMaestro (Woburn, 
MA), a planar multispectral wide-field imaging device. The resected 
oral tumors were imaged with a multispectral digital microscope, con-
sisting of a modified wide-field dental microscope capable of imag-
ing in reflectance and fluorescence modes [42]. Appropriate control 
experiments were performed to ensure that data from these devices 
could be combined. To compare the increase in fluorescence intensity 
of incubated tissue, both preincubation and postincubation images 
were acquired. The preincubation image provided a measure of auto-
fluorescence background signal from tissue. After wide-field imag-
ing, the biopsy samples were sliced transversely to a thickness of 
200 to 300 μm and imaged in both reflectance (to locate epithelial 
and stromal regions of tissue slices) and fluorescence (to detect con-
trast agent) modes using a confocal microscope (Zeiss LSM 510). 
This high-resolution imaging was used to assess penetration depth 
47 (red) and an anti–EGFR antibody labeled with Alexa 488 (green) 
ar, 20 μm. (B) Competition assay of 1483 cells incubated with EGF– 
 1×, and 10× the amount of EGF–Alexa 647. Scale bar, 20 μm. 
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of the EGF-dye conjugate. All tissue was returned to the Pathology 
Department of the University of Texas MD Anderson Cancer Center 
for hematoxylin and eosin staining and IHC processing. Immuno-
histochemical staining for EGFR was performed by the Research His-
tology Core Laboratory at MD Anderson Cancer Center following 
standard protocol with a standard EGFR antibody (clone 31G7 mouse 
antihuman; Zymed, South San Francisco, CA). 
To further validate the specificity of EGF–Alexa 647 in oral tis-

sues, a resected oral lesion was incubated with rhodamine-labeled 
3-kDa dextran in 10% DMSO as a nonspecific fluorescent agent 
with a similar size as EGF peptide. The concentrations of fluores-
cently labeled dextran and incubation conditions were identical to 
the experiments performed with EGF–Alexa 647. 
Quantification of Imaging Data 
Wide-field fluorescence images of the oral tissue samples obtained 

before and after incubation were quantitatively analyzed using Photo-
shop 7.0 to calculate the mean fluorescence intensity (MFI) across 
the tissue surface. A differential contrast value was calculated by find-
ing the ratio of the increase in the MFI of neoplastic tissue after in-
cubation relative to the increase in the MFI of normal tissue. For the 
biopsies, paired sets of abnormal and normal biopsies from the same 
patients were used together; for the resected oral lesions, a head and 
Figure 2. High-resolution white light and fluorescence confocal image
EGF–Alexa 647 conjugate. Scale bars, 100 μm. 
neck surgical oncologist identified regions of clinically neoplastic and 
normal tissue from white light images of the lesions. The physician 
was blinded to the results of fluorescence imaging. Differential con-
trast was calculated for each clinical sample; results were compared 
with histology and IHC staining for EGFR. 

Portions of the normal epithelium in the resected tumors displayed 
characteristics of hyperkeratosis or hyperplasia. Although these con-
ditions are benign, they may affect the autofluorescence patterns and 
act as confounding factors in diagnostic strategies based on autofluo-
rescence alone [43,44]. In addition, the thickened epithelium may 
result in entrapment of contrast agent, leading to artificially high dif-
ferential contrast values. To investigate the specificity of the differen-
tial contrast approach with EGF–Alexa 647 and ensure that these 
conditions will not negatively affect our performance, differential 
contrast was calculated for regions of hyperkeratosis (n = 4) and hy-
perplasia (n = 4) as identified from histology slides by an expert head 
and neck pathologist. The epithelium in these regions was otherwise 
normal with no signs of dysplasia or cancer. Differential contrast was 
calculated for hyperkeratotic and hyperplastic regions relative to the 
same normal regions that were used previously; there was no overlap 
between these normal regions and regions of hyperkeratosis or hy-
perplasia. Differential contrast was also calculated for the tissue in-
cubated with the rhodamine-labeled dextran as another control to 
investigate the specificity of EGF–Alexa 647. 
s of three-dimensional tissue culture phantoms incubated with the 
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Figure 3. (A) Wide-field white light image of resected oral lesion. The neoplastic region as selected by an expert clinician blinded to the 
results of fluorescence imaging is outlined in yellow; the representative normal region is outlined in blue. The histologic diagnosis was 
invasive cancer. Scale bar, 1 cm. (B) Wide-field fluorescence image of the same sample obtained after topical delivery of EGF–Alexa 647 
and washing to remove excess dye. Scale bar, 1 cm. (C) Mean fluorescence intensity of neoplastic and normal regions before and after 
incubation. All values are normalized to the intensity of the normal region before labeling. (D) EGFR IHC–stained sections from within the 
neoplastic and normal regions in the sample. Scale bars, 200 μm. 
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High-resolution confocal fluorescence images of biopsy slices in-
cubated with EGF–Alexa 647 were also analyzed to quantitatively 
calculate the MFI in the epithelial region of normal and dysplastic 
samples and regions containing tumor cells for tumor specimens. A 
Figure 4. (A) Wide-field white light image of resected oral lesion. Sca
rhodamine-labeled 3-kDa dextran. The orange pathology ink is the c
Fluorescence image of tissue after incubating with EGF–Alexa 647. 
ratiometric contrast value was calculated for each set of paired biop-
sies by dividing the MFI of the clinically abnormal tissue by the MFI 
of the corresponding clinically normal sample. Results were com-
pared with the histologic diagnosis of each biopsy set. 
le bar, 1 cm. (B) Fluorescence image of tissue after incubating with 
ause of fluorescence observed near the edges of the tissue. (C) 
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Figure 5. Differential contrast values calculated from wide-field fluo-
rescence images of fresh oral tissue incubated with EGF–Alexa 647 
conjugate. Each data point represents a pair of tissue specimens 
from a single patient. The bars represent the average differential 
contrast and SD for tissue with moderate to severe dysplasia (n = 
4) and tissue with cancer (n = 13). Differential contrast values for 
regions of hyperkeratosis and hyperplasia (n = 8) are also indicated. 
Results 

Confocal fluorescence images of 1483 cells (EGFR-positive) incubated 
with the EGF–Alexa 647 conjugate showed bright red fluorescence 
localized at the cell membrane; in contrast, images of MDA-MB-
435 cells (EGFR-negative) incubated with the agent did not show 
detectable signal under the imaging conditions used here (data not 
shown). The 1483 cells incubated with both EGF–Alexa 647 and 
anti–EGFR antibody labeled with Alexa 488 showed colocalization 
of fluorescence signal at the cell membrane as shown in Figure 1A. 
The competition assay with EGF–Alexa 647 and unlabeled EGF 
showed a decrease in fluorescence signal with increasing concentra-
tions of unlabeled EGF as shown in Figure 1B. In addition, control 
experiments were also conducted using fluorescently labeled dextran. 
Images of cells incubated with rhodamine-labeled 3-kDa dextran did 
not show any binding to or retention of the nonspecific fluorescent 
agent in cells. 

To evaluate whether the EGF–Alexa 647 conjugate could be deliv-
ered topically, initial experiments were carried out in three-dimensional 
tissue phantoms. Figure 2 shows confocal fluorescence images of two 
transversely sliced tissue phantoms that were incubated with EGF– 
Alexa 647 before slicing. Fluorescence signal was observed throughout 
the phantom containing the EGFR-positive 1483 cells, whereas no 
fluorescence signal was observed in the phantom containing the 
EGFR-negative 435 cells. In some of the 1483 cells, internalization 
of the contrast agent was observed. These results demonstrate that 
selective targeting of EGFR receptors can be achieved in this model 
system with topical delivery and that excess contrast agent can be 
easily removed with a simple washing step. 

Next, EGF–Alexa 647 was topically delivered to fresh oral biopsies 
and resected lesions to demonstrate its ability to bind to human tis-
sue. Figure 3A shows the white light wide-field image of a represen-
tative tissue sample with the clinically neoplastic region outlined in 
yellow and a representative normal region outlined in blue. Figure 3B 
shows the wide-field fluorescence image obtained after topical de-
livery of EGF–Alexa 647 and removal of excess contrast agent. A 
preincubation image was obtained using the same instrument param-
eters to estimate levels of autofluorescence signal from the tissue 
sample; the background autofluorescence at these wavelengths was 
very low. After incubating with the contrast agent, the fluorescence 
image shows greater fluorescence intensity in the neoplastic region 
compared with the normal region. Fluorescence observed on the 
edges of this specimen occurs as an artifact of surgical cautery. Fluo-
rescence intensity of the representative normal region and the neo-
plastic region is shown quantitatively in Figure 3C , which compares 
the MFI before and after incubation of each region. Figure 3D shows 
the results of IHC staining for EGFR in tissue taken from neoplastic 
and normal regions. The results show strong staining indicating a 
high level of EGFR throughout the neoplastic region as compared 
with only weak staining localized to the basal layer of the epithelium 
indicating a low level of EGFR in the normal region. The IHC anal-
ysis is in agreement with the results from wide-field imaging on re-
sected lesions. The pathological diagnosis for this representative case 
was invasive squamous cell carcinoma. 

The resected oral lesion labeled with 3-kDa dextran as a nonspe-
cific fluorescent agent is shown in Figure 4 in white light, after in-
cubating with the rhodamine-labeled dextran, and after incubating 
with EGF–Alexa 647. Background fluorescence was subtracted using 
preincubation images. No visible nonspecific fluorescence is observed 
after incubating with dextran; after incubating with EGF–Alexa 647, 
the neoplastic region shows bright fluorescence. The orange pathol-
ogy ink on the tissue results in the fluorescence seen on the tissue 
edges in Figure 4B. Pathological diagnosis for this sample was inva-
sive carcinoma. 

A differential contrast value was calculated for each clinical sample 
to quantitatively compare fluorescence intensity increases in neo-
plastic and normal tissue. Figure 5 shows the differential contrast 
achieved for each specimen; the histopathologic diagnosis is also in-
dicated. For samples with moderate to severe dysplasia (n = 4), the 
differential contrast ranged from 1.6 to 3.9 with an average of 2.3. 
For samples with cancer (n = 13), the differential contrast ranged 
from 2.0 to 6.9 with an average of 3.8. 

To quantitatively examine the specificity of EGF–Alexa 647, re-
gions of hyperkeratosis (n = 4) and hyperplasia (n = 4) were assessed 
for differential contrast value. The differential contrast obtained for 
these regions ranged from 0.8 to 1.2 with an average of 1.0. The 
contrast value of each region is also shown in Figure 5. To calculate 
a differential contrast value of the tissue incubated with dextran, 
images were taken at a long-enough exposure time to detect a fluo-
rescence signal. The fluorescence at this higher exposure, however, 
was fairly homogenous, as indicated by the calculated differential 
contrast of 1.04. After incubating the tissue with EGF–Alexa 647, 
the differential contrast calculated (using the same regions of neoplas-
tic and normal tissue) was 3.27. 

After wide-field imaging of tissue samples, we obtained high-
resolution confocal fluorescence images of transverse tissue slices 
prepared from biopsies incubated with EGF–Alexa 647. The aim 
of high-resolution imaging was to assess the tissue distribution of 
topically delivered EGF–Alexa 647 conjugate. Figure 6 shows im-
ages of a representative pair of biopsies after incubation. Figure 6A 
shows images (fluorescence and IHC) of a clinically abnormal sample 
diagnosed as cancer, whereas Figure 6B shows images of a clinically 
and histologically normal sample from the same patient. The fluores-
cence images highlight significant differences in the contrast agent sig-
nal of the two samples; the cancer specimen showed strong uniform 
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Figure 6. (A) Confocal fluorescence image and IHC image of a clinically abnormal specimen incubated with topically applied EGF–Alexa 
647 conjugate. The histologic diagnosis was invasive cancer. Scale bars, 100 μm. (B) Confocal fluorescence image and IHC image of 
a corresponding clinically and histologically normal specimen from the same patient incubated with topically applied EGF–Alexa 647 
conjugate. The white line denotes the surface of the epithelium. Scale bars, 100 μm. (C) Ratiometric contrast ratio calculated from high-
resolution fluorescence images of eight biopsy pairs incubated with EGF–Alexa 647 conjugate. Histologic diagnosis is indicated for 
each pair. 

 

fluorescence around epithelial cell membranes. In contrast, the normal 
sample shows only weak fluorescence around epithelial cells near the 
basement membrane. The images in Figure 6, A and B, demonstrate
permeation of contrast agents to depths in excess of 500 μm. No re-
sidual, nonspecific fluorescence was observed in these images, suggest-
ing that excess fluorescent contrast agent can be removed with simple 
washing. The results of high-resolution optical imaging of EGFR ex-
pression in these clinical samples were validated using IHC analysis. 
The IHC images show a strong expression of EGFR in the clinically 
abnormal biopsy but not in the corresponding normal sample. 

A ratiometric contrast value was calculated for each set of paired 
biopsies (n = 8 pairs) to quantitatively compare MFI from the high-
resolution fluorescence images of these samples. The ratiometric con-
trast for each biopsy set is shown in Figure 6C ; the histopathologic 
diagnosis is also indicated. The contrast is greater than 1.5 in all cases 
and ranges between two and four for most samples. 
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Discussion 

In this study, we evaluated the potential to image the expression of 
EGFR after topical delivery of fluorescently labeled EGF peptide for 
detection of oral neoplasia. We investigated the image contrast and 
topical delivery that could be achieved with this labeled peptide in 
both wide-field and high-resolution imaging, translating results from 
cells and tissue phantoms to intact human tissue specimens. 

In wide-field fluorescence images of fresh oral tissue diagnosed as 
moderate or severe dysplasia, we observed an average 2.3-fold in-
crease in the fluorescence signal in neoplastic tissue compared with 
normal tissue. For samples diagnosed as cancer, we observed an aver-
age 3.8-fold increase in fluorescence signal. The variability of dif-
ferential contrast value between samples is expected because of 
patient-patient variability and differences in levels of EGFR expres-
sion in different sites within the oral cavity. We also observed some 
overlap in differential contrast values between dysplasia and cancer. 
Despite these variations, differential contrast values can distinguish 
neoplasia from normal tissue; every neoplastic sample had a contrast 
value greater than 1.5. Our calculated contrast values are consistent 
with previous studies, which have shown that EGFR expression level 
increases approximately two- to five-fold with the development of 
neoplasia. The increase in EGF–Alexa 647 staining intensity is also 
consistent with the degree of staining observed in IHC analysis. 

Wide-field imaging observations of differential contrast are paral-
leled by high-resolution imaging observations of ratiometric contrast. 
Neoplastic oral biopsies showed a two- to four-fold higher fluores-
cence signal than paired normal biopsies. At the same time, normal 
specimens are associated with a small increase in fluorescence after 
topical application of EGF-dye. We attribute this change to two pos-
sible factors. The first is the basal level of EGFR in normal oral epi-
thelium, which can contribute to the increase in fluorescence signal 
by specific targeting. Second, we observed entrapment of some fluo-
rescence contrast agent in the keratinized superficial layer of some 
specimens. This entrapment of EGF-dye was observed in the case 
of a few biopsy specimens and could not be removed by simple wash-
ing steps. However, when differential contrast was calculated for re-
gions of hyperkeratosis with underlying normal epithelium and in 
regions of hyperplasia, the average differential contrast value was 
1.0, which would be expected for a normal region. All regions of hy-
perkeratosis or hyperplasia had contrast values lower than any regions 
with moderate to severe dysplasia or cancer. In this study, neoplastic 
samples are therefore consistently associated with higher EGF stain-
ing than normal samples, even those with a thickened keratin layer or 
thickened epithelium. Incubating tissue with the nonspecific fluores-
cent agent (rhodamine-labeled dextran) resulted in a differential con-
trast value of 1.04, which is significantly lower than any neoplastic 
sample. This result clearly demonstrates that EGF–Alexa 647 specif-
ically targets neoplasia. 

We selected the EGF peptide to target the EGF receptor rather 
than an anti–EGFR antibody, which has been used in previous studies 
to label transverse sections of tissue slices. The EGF peptide (∼6 kDa)  
is significantly smaller than antibodies (∼150 kDa), and owing to its 
small size, it has increased tissue permeability and clearance of un-
bound contrast agent can be achieved with simple washing steps. 
Topical delivery of EGF peptide–based contrast agents has the poten-
tial to overcome significant difficulties associated with targeting pre-
invasive disease in oral tissue using IV delivery or subcutaneous 
injections. In IV-based delivery, the distribution of molecular con-
trast agents is controlled in large part by blood circulation. Because 
the epithelial layer is avascular, direct delivery of contrast agents to 
epithelial cells is limited using IV delivery. In addition, losses during 
circulation, especially for small peptides, can further reduce the effec-
tive concentration [45]. IV-injected contrast agents typically require 
24 to 48 hours of circulation time to achieve significant specific tar-
geting of in tumor models. This significant delay can limit their use 
for screening. Further, many of the macromolecular contrast agents 
such as peptides are susceptible to degradation during such long in-
cubation intervals [46]. 

One of the potential limitations in selecting naturally occurring 
growth factor ligands for molecular imaging applications is their abil-
ity to activate downstream cell signaling for proliferation. This obser-
vation has recently been reported using labeled human EGF peptide 
in implanted tumor cell lines [47]. To overcome this potential limi-
tation, it is possible to select targeting peptides using library-based 
screening approaches. Studies have shown the potential to select EGFR 
targeting peptides with reduced proliferative activity compared with 
the natural EGF ligand [48,49]. 

A potential limitation of wide-field imaging alone is that it may be 
difficult to determine a precise margin of disease, especially if the tu-
mor extends in the submucosa, because most photons collected with 
the current wide-field imaging device come from the superficial 3 mm 
of tissue. However, wide-field images are useful because they allow 
a quick survey of a large region of tissue and can be used to locate 
lesions and estimate disease margins. Even regions of moderate dyspla-
sia that might not be obvious clinically displayed contrast agent bind-
ing that could be visualized with wide-field fluorescence imaging. 
Once an approximate margin is determined from wide-field images, 
high-resolution imaging can be used to refine this margin. Fiber-optic 
confocal systems can be placed on or inserted beneath the tissue sur-
face to allow assessment of contrast agent binding to cells along the 
perimeter and therefore be used to determine a precise margin and 
detect submucosal tumor extension. 

In summary, we have demonstrated noninvasive topical delivery of 
a molecular contrast agent to image changes in EGFR expression in 
oral neoplasia. Using a combination of wide-field and high-resolution 
imaging, we obtain quantitative contrast ratios to differentiate clini-
cally neoplastic tissues from normal samples in both biopsies and re-
sected oral lesions. The imaging results are in agreement with the 
pathological diagnosis as well as the IHC analysis. Results suggest 
that molecular imaging of EGFR is a noninvasive approach that 
may have the potential to aid in molecular diagnosis and character-
ization of oral neoplasia in a clinical setting. 
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