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Optical Molecular Imaging of Multiple Biomarkers of Epithelial 

Neoplasia: EGFR Expression and Metabolic Activity in Oral Mucosa 

 

Abstract 

Biomarkers of cancer can indicate the presence of disease and serve as therapeutic 

targets. Our goal is to develop an optical imaging approach using molecularly-targeted 

contrast agents to assess several centimeters of mucosal surface for mapping expression 

of multiple biomarkers simultaneously with high spatial resolution. The ability to image 

biomarker expression level and heterogeneity in vivo would be extremely useful for 

clinical cancer research, patient selection of personalized medicine, and monitoring 

therapy. In this proof-of-concept ex vivo study, we examined correlation of neoplasia 

with two clinically relevant biomarkers, epidermal growth factor receptor (EGFR) and 

metabolic activity. 286 unique locations in nine samples of freshly resected oral mucosa 

were imaged after topically applying optical imaging agents EGF-Alexa 647 (to target 

EGFR) and 2-NBDG (to target metabolic activity).  Quantitative features were calculated 

from resulting fluorescence images and compared to tissue histopathology maps.  The 

EGF-Alexa 647 signal correlated well with EGFR expression as indicated by 

immunohistochemistry.   A classification algorithm for presence of neoplasia based on 

the signal from both contrast agents resulted in an area under the curve of 0.83.  Regions 

with a posterior probability from 0.80-1.00 contained >50% neoplasia 99% (84/85) of the 

time.  This study demonstrates a proof-of-concept of how non-invasive optical imaging 

can be used as a tool to study expression levels of multiple biomarkers and their 
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heterogeneity across a large mucosal surface, and how biomarker characteristics correlate 

with presence of neoplasia.  Applications of this approach include predicting regions with 

the highest likelihood of disease, elucidating the role of biomarker heterogeneity in 

cancer biology, and identifying patients who will respond to targeted therapy. 

 

Non-standard abbreviations:      

MDM: multispectral digital microscope 
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Introduction 

The molecular changes that accompany the dysplasia-to-carcinoma sequence can 

serve as diagnostic aids, therapeutic targets, indicators of recurrence, or as surrogate end-

points in clinical trials of targeted therapeutics [1-4].  For example, in breast cancer 

patients, estrogen receptor positivity as indicated by immunohistochemistry (IHC) is not 

only associated with improved prognosis but also qualifies the patient for targeted 

hormonal therapy such as tamoxifen [5].  When it was recently discovered that 90% of 

gastrointestinal stromal tumors have an activating mutation in the KIT (CD117) receptor 

tyrosine kinase gene, investigators evaluated a KIT inhibitor, imatinib, for treatment and 

found dramatically improved patient survival [6].  

While many promising biomarkers of neoplasia have been identified, only a few 

are routinely used in clinical decision-making.  In part, this is due to the lack of tools 

available to quantitatively assess biomarker expression in vivo at the point-of-care, which 

limits discovery of the role that biomarkers play in cancer progression.  Although 

hematologic cancers tend to be clonal, solid tumors are frequently extremely 

heterogeneous.  Standard biomarker assessment is currently performed on small biopsy 

specimens that may not reflect the heterogeneity of a large solid tumor.  To achieve the 

potential of molecular management of neoplasia, there is an important need to better 

understand how the spatial and temporal changes in biomarker expression correlate with 

disease progression, and to develop methods to non-invasively assess in vivo expression 

of these biomarkers before, during, and after therapy.   

To assess the feasibility of using optical imaging to simultaneously map 

expression of multiple biomarkers in mucosal surfaces, we performed a proof-of-concept 
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study in freshly resected human surgical specimens from oral cancer patients.  We 

demonstrate that such maps correlate both with biomarker expression and histologic 

diagnosis, and we show that they can be used to predict tissue regions with the highest 

likelihood of disease. 

In the optical molecular imaging approach used in this study, a solution 

containing a targeted, fluorescent contrast agent is applied topically to a tissue at risk.  

The use of topical application is an alternate mode of delivering contrast agents compared 

to intravenous injection that is applicable to both ex vivo and in vivo imaging.  It has 

many benefits, including a decreased required dose and only local exposure, thereby 

potentially reducing systemic toxicity concerns.  Topical application is also associated 

with shorter incubation times.  In the oral cavity, a mouthwash or topical gel formulation 

could be used to topically apply targeted imaging agents in patients.  The tissue is then 

rinsed and imaged to yield a spatial map of biomarker expression which can be used to 

guide clinical decision making, aiding in the early detection of neoplasia, staging of 

disease, selecting and monitoring therapy, detecting recurrence, and predicting the 

likelihood of progression.  Although the study reported here was conducted using freshly 

resected oral tissue, the concept could be translated to live patient oral cavity imaging 

once regulatory requirements are fulfilled.  Such an approach using topical application of 

a fluorescent imaging agent in vivo to detect colonic neoplasms was recently 

demonstrated [7].  

Optical molecular imaging has potential advantages over the two most widely 

used techniques to assess biomarker expression levels, immuno-histochemistry (IHC) and 

reverse transcription polymerase chain reaction (RT-PCR).  Most frequently, IHC is used 
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to assess protein expression in vitro in histologic specimens.  The limitations of IHC 

include the need to remove tissue for assessment, difficulty in quantifying biomarker 

expression levels, and challenges associated with examining multiple biomarkers per 

slide, unless the proteins of interest lie in distinct compartments within the cell [8]. 

Information from multiple biomarkers frequently outperforms information from a single 

marker alone [5].  Breast cancer presents a good example of this in clinical practice, 

where estrogen receptor, progesterone receptor, and HER2/neu expression are all 

routinely assessed for prognosis and selection of therapy.  On the other hand, RT-PCR 

and other high-throughput methods to measure altered mRNA expression associated with 

neoplasia can be used to simultaneously assess thousands of potential biomarkers.  

However, gene expression profiling requires tissue removal, and it is difficult to assess 

information about spatial distribution of biomarker changes.  It is also not clear that 

changes in gene expression lead to changes in protein expression.   

Optical molecular imaging using targeted contrast agents, however, is ideally 

suited to achieve the goal of spatial and temporal assessment of biomarker expression in 

vivo.  Optical molecular imaging can be used to non-invasively image the distribution of 

multiple biomarkers across a large mucosal surface in vivo.  Optical molecular imaging 

has been used to image eight or more biomarkers in distinct spectral bands with high 

spatial resolution, and may serve as an important tool in better understanding the role of 

biomarkers in the disease process [9].  

The goal of this study was to explore the role of optical imaging with multiple 

topically applied targeted contrast agents to study the heterogeneity of biomarker 

expression and its correlation with the presence of neoplasia across a large mucosal 
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surface area.  The oral cavity was chosen as an organ site due to its accessibility to optical 

imaging.  Optically active contrast agents targeting two clinically relevant biomarkers, 

the epidermal growth factor receptor (EGFR) and metabolic activity, were applied to the 

tissue surface and the resulting optical molecular images were compared to the gold 

standard of histopathology.  

EGFR is one of the most commonly studied biomarkers in cancers of the oral 

cavity because it is widely overexpressed in oral squamous cell carcinoma and dysplasia 

[10].  Though the reported percentage of patients with overexpression of EGFR varies 

between studies, a review from Lippman et al. indicates that 80-100% of patients with 

premalignant or malignant oral lesions have high EGFR expression [11].  A recent study 

from Taoudi Benchekroun et al. found that 71% of oral premalignant lesions display high 

EGFR expression levels, which correlated with a greater risk of developing oral cancer 

[12].  EGFR expression level also increases with the progression of disease [13-16]. The 

prevalence of EGFR expression makes it a potentially useful target to improve detection 

and guide treatment; in fact, the EGFR inhibitor, cetuximab, is FDA-approved for head 

and neck cancer therapy.   

Another clinical biomarker for oral cancer is increased metabolic activity. 

Metabolism is elevated in dysplasia and cancer due to rapid cell growth and division; 

consequently glucose transporters (GLUTs) are often overexpressed or operate at a 

higher activity level.  In a study by Kunkel et al., 100% (40/40) of oral cancers expressed 

GLUT-1 by IHC, and Mellanen et al. found that every tumor sample they examined 

expressed either GLUT-1 or GLUT-3 mRNA [17,18].  Ayala et al. found GLUT-1 

overexpression in 50% of their oral cancer specimens [19], Tian et al. observed that 
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73.7% of samples had moderate to strong GLUT-1 expression [20], and Ohba et al. 

discovered that overexpression of GLUT-1 in the invasion front is associated with the 

tumor depth and prognosis [21].   
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Materials and Methods 

Preparation of Fluorescent Imaging Agents 

To assess EGFR expression, the natural ligand of EGFR, the epidermal growth 

factor (EGF), was conjugated to a fluorescent dye.  Purified human-derived recombinant 

EGF peptide (Calbiochem, San Diego, CA) was conjugated to Alexa Fluor 647-

carboxylic ester (Invitrogen, Carlsbad, CA). Excess free dye was removed by size 

exclusion chromatography followed by dialysis.  The resulting EGF-Alexa 647 imaging 

agent was diluted to a final concentration of 25 μg/mL in sterile 1X phosphate buffered 

saline (PBS) with 10% dimethylsulfoxide (DMSO) as a permeation enhancer.   

Specificity studies in both cells and resected human tissue have been previously 

performed and published with EGF-Alexa 647, demonstrating the ability of this agent to 

specifically target EGFR in cell culture and in oral mucosa [22].  

A fluorescently labeled glucose molecule was used to assess metabolic activity.  

2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) is a 

commercially available optical glucose analog (Invitrogen, Carlsbad, CA).  2-NBDG was 

diluted to a concentration of 0.16 mM in sterile 1X PBS.  Multiple studies have used 2-

NBDG as a metabolic activity indictor [23-25].  Tumor cells in culture have been shown 

to take up approximately 5 times the amount of 2-NBDG compared to non-malignant 

cells, and competition assays with free glucose decreased the amount of 2-NBDG that 

was taken up [23].  A recent study by Sheth et al. demonstrated the comparability of 2-

NBDG to FDG-PET imaging in several preclinical examples, and Nitin et al. 

demonstrated the potential use of 2-NBDG for detecting neoplasia in clinical specimens, 
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in which dysplasia and cancer displayed a 2- to 5-fold increase in fluorescence intensity 

compared to normal tissue [24,25].  

Application of Fluorescent Imaging Agents to Clinical Samples 

To evaluate the ability of 2-NBDG and EGF-Alexa 647 to identify neoplasia in 

human oral tissue, freshly resected clinical specimens were obtained from patients 

undergoing surgery at M. D. Anderson Cancer Center.  These patients gave written 

informed consent to participate in the study, which was approved by the Institutional 

Review Boards at both M. D. Anderson Cancer Center and Rice University.  Neoplastic 

tissue was obtained immediately following surgical resection and taken to a lab for 

contrast agent application and subsequent imaging.   

To assess autofluorescence before the application of any fluorescent contrast 

agents, the tissue was imaged with a multispectral digital microscope (MDM), a 

widefield imaging system that has been described in detail previously [26].  Briefly, the 

MDM is a dental microscope that has been modified with fluorescence excitation and 

emission filters and a mercury-argon light source; it is capable of imaging in both 

reflectance and fluorescence modes.  It has a large field of view (~5 x 7 cm) and can 

achieve a lateral spatial resolution up to 0.016 mm.  Pre-incubation images of the tissue 

were taken using standard white light setting and the filter configurations for 2-NBDG 

(ex. 475, em. 550) and EGF-Alexa 647 (ex. 650, em. 670) to allow later subtraction of 

tissue autofluorescence from post-incubation images. 

After autofluorescence imaging, 2-NBDG solution was topically applied to the 

epithelial surface of the resected oral tissue and placed in an incubator at 37 °C for 20 

minutes.  Following incubation with 2-NBDG, the tissue was briefly rinsed with sterile 
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1X PBS to remove any excess unbound fluorescent contrast agent.  The tissue was again 

imaged with the MDM using the filter configurations for 2-NBDG and EGF-Alexa 647.  

Next, EGF-Alexa 647 in 10% DMSO was topically applied to the epithelial surface of the 

tissue and incubated for 20 minutes at 37 °C.  The tissue was briefly rinsed with sterile 

1X PBS and imaged using appropriate filter settings on the MDM.   

Once imaging was complete, the entire tissue was returned to the Pathology 

Department of M. D. Anderson Cancer Center.  The tissue was processed following 

standard procedures: the tissue was thinly sliced anterior to posterior and placed into 

cassettes for H&E staining.  Locations of pathology cuts were documented and the 

portion of the tissue that was placed into each cassette was recorded to allow for future 

correlation to pathology.  Neither 2-NBDG nor EGF-Alexa 647 affects histopathology 

processing or staining. 

Creation of Histopathology Maps 

To compare the results of widefield imaging with the gold standard of 

histopathology, a two-dimensional color-coded pathology map was created for each 

clinical specimen.  To create this map, all the H&E slides for each specimen were 

reviewed with an expert Head and Neck Pathologist blinded to the optical images (MW).  

The diagnosis across the entire epithelium was recorded for each slide.  This expert 

diagnosis from the slide was assumed to represent the diagnosis for the entire thickness of 

the thin piece of tissue that was placed in the corresponding cassette.  The diagnoses of 

normal epithelium; mild, moderate, and severe dysplasia; and cancer were all assigned a 

unique color code.  Based on detailed notes of where the tissue was sliced and the 

diagnosis across the epithelium for each piece of tissue, the color-coded histopathology 
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map was created as an overlay on top of the white light image of the clinical specimen.  

The resulting two-dimensional histopathology map was used as a gold standard to 

compare with the widefield fluorescence images.  Creation of a histopathology map is not 

standard practice in pathology, and in order to create an accurate map, the tissue had to 

have a fairly flat surface, slicing had to be strictly monitored and documented, and a 

detailed pathology reading across the entire surface had to be obtained and recorded.  All 

the tissue samples used in this study met these criteria. 

Immunohistochemistry  

The Histology Core Laboratory at M. D. Anderson Cancer Center performed 

immunohistochemical staining for EGFR on multiple specimens in order to confirm that 

optical molecular imaging results correlated with the gold standard of IHC for the 

presence of EGFR.  Immunohistochemical analysis was performed using the automated 

BOND MAX immunohistochemical stainer by Vision Biosystems (Norwell, 

Massachusetts) using the standard clinically used antibody and protocol for EGFR (clone 

31G7 mouse antihuman; 1:50; Zymed, South San Francisco, CA).  An expert Head and 

Neck Pathologist reviewed these slides to grade the intensity of staining across the entire 

epithelial surface.  The scale used for assessment of intensity of EGFR immunostaining 

was from zero to three.  Score 0 indicated no staining or non-specific staining, score 1 

was used for weak staining of >10% of cells, score 2 indicated moderate staining of 

>10% of cells, and score 3 indicated strong and complete staining of >10% of cells [27].  

The level of immunostaining was compared to fluorescence intensity from the 

corresponding portion of tissue to further validate the correlation between IHC for EGFR 

and EGF-Alexa 647 fluorescence. 
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Immunohistochemistry for GLUT expression was not compared with fluorescence 

imaging results with 2-NBDG, because while IHC can reveal GLUT expression level, it 

cannot assess GLUT activity level.  Previous studies have not found a significant 

correlation between overexpression of glucose transporters and standardized uptake 

values of FDG in FDG-PET imaging, a widely accepted clinical method of analyzing 

metabolic activity [20,28].   

Quantitative Analysis of Fluorescence Images  

Post-incubation fluorescence images of both 2-NBDG and EGF-Alexa 647 were 

analyzed using Matlab R2010b software (The MathWorks, Natick, MA) to identify 

trends in optical molecular images that correlate with diagnosis.  All images pre- and 

post-incubation were aligned using a Matlab image registration algorithm.  The 

fluorescence images were converted to grayscale and background autofluorescence was 

subtracted.  For each clinical sample, multiple square regions of interest 50 x 50 pixels in 

size were selected, using the histopathology map as a guide to ensure that each region 

selected contained a uniform diagnosis and that regions did not overlap.  Image features 

were calculated and compared to feature values from regions of normal tissue to 

determine if these characteristics were altered with the presence of neoplasia.  These 

features included normalized mean intensity, standard deviation, skewness, kurtosis, and 

the coefficient of variation within each region.  Normalization of mean intensity was 

performed per patient; the mean of all histologically normal regions of interest for a 

patient was used to normalize every region of interest selected for that patient.  

Additionally, a Matlab edge detection algorithm using the Canny method was applied to 

the bulk fluorescence image in order to detect where sharp gradients in intensity occurred 
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because this may also serve as a measure of heterogeneity of biomarker expression.  The 

length of this edge line divided by the number of pixels in the region was calculated for 

all selected regions of interest. 

Development of a Classification Algorithm 

To discriminate normal from neoplastic regions of interest based on these 

quantitative feature values, a classification algorithm was developed using linear 

discriminant analysis.  The algorithm used all of the 50 x 50 pixel regions for both 

training and testing. Features were selected sequentially to identify which were most 

useful in distinguishing neoplastic tissue from normal tissue.  Only three features were 

chosen in order to avoid over-training of the algorithm.  Sensitivity, specificity, and area 

under the receiver operator characteristic curve (AUC) were calculated. 

Application of Classification Algorithm to a New Data Set to Predict Regions 

with the Highest Likelihood of Disease 

We examined the ability of this algorithm to identify regions of interest with the 

highest likelihood of disease, information that could be useful for early detection and 

diagnosis, planning surgical resection, monitoring treatment response, or screening for 

recurrence. A 50 x 50 pixel grid was used to divide the original fluorescence images from 

all the patients into new regions of interest.  The classification algorithm described 

previously was applied to these regions in order to generate posterior probabilities (a 

value between zero and one) for all the new regions.  The practical application of this 

strategy would be to help a clinician objectively identify areas with the highest likelihood 

of disease.  The regions with posterior probabilities from 0.80-1.00 were identified and 

compared to histopathology map information at that site.  Regions with posterior 
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probabilities from 0.60-0.79 were also identified as regions likely to be neoplastic, and 

this prediction was compared to the histopathology gold standard to assess performance 

of the algorithm.   Only regions that contained epithelium throughout the entire 50 x 50 

pixel region were evaluated; regions overlapping the edge of the tissue were not 

considered.   



 16 

Results 

Nine clinical specimens from different patients were imaged as described; a 

histopathology map was created for each specimen.  Figure 1 shows images from two 

representative clinical specimens: one with mild to moderate dysplasia and one with 

cancer.  Qualitative comparison of the fluorescence images and the gold standard 

histopathology maps of each specimen demonstrates that, for both imaging agents, there 

is greater fluorescence intensity in areas of neoplasia, including areas of invasive 

carcinoma as well as in areas of mild to moderate dysplasia. Note that due to the manner 

in which the imaging agent was applied, topical application at the edges of the specimen 

resulted in some imaging agent coming in contact with the deep tissue.  The imaging 

agent is not as easily rinsed from the deep tissue, and so a small edge effect can be 

observed; higher fluorescence intensity is seen around the edges of the tissue.   

Immunohistochemistry to confirm EGFR expression 

IHC staining for EGFR was performed on multiple specimens to confirm 

previously published findings validating the specificity of EGF-Alexa 647 for EGFR.  

Figure 2 shows results from one representative patient specimen.  Figure 2A shows the 

widefield EGF-Alexa 647 fluorescence image for this specimen, a white rectangle 

indicates the slice of tissue for which IHC was performed.  Figure 2B shows the 

corresponding histopathology map for this specimen.  Figure 2C shows the 

immunostained slide prepared from this slice along with the IHC scale, indicating the 

pathologist’s grading of degree of staining for EGFR.  Below the IHC image is the 

corresponding portion of the fluorescence image for comparison.  The fluorescence 

intensity was summed for each column in the fluorescence image and normalized to the 
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maximum value; results are shown on the fluorescence intensity graph in Figure 2C.  

Figure 2C also shows the H&E stained slide and H&E scale (corresponding to the 

histopathology map) for reference.  Regions of high fluorescence intensity correspond 

well to regions of elevated IHC staining across this tissue slice, verifying the specificity 

of EGF-Alexa 647.  The edge effect mentioned earlier is the cause of the slightly higher 

fluorescence at the edges of the tissue that do not correlate with IHC results. 

 The same type of analysis was performed for four patients to ensure consistency 

of results, though in this case the edges were cropped.  Figure 3 compares the intensity of 

IHC staining and the graph of normalized fluorescence intensity for two additional 

specimens, with two difference slices shown from each. IHC grading and fluorescence 

intensity correlate well for all the slides investigated. 

Quantitative Analysis of Fluorescence Images  

Figure 4 shows a representative sample with the outlines of the selected 50 x 50 

pixel regions of interest.  This specimen contains 4 normal regions, 3 regions of mild 

dysplasia, 9 regions of moderate dysplasia, and 3 regions of severe dysplasia.  The 

regions are oriented parallel to the pathology slices in order to maximize the number of 

regions that could be selected per sample.  Table 1 details the number of regions that 

were selected per sample by diagnostic category.  Overall, 286 total regions were selected 

from the nine specimens and were categorized as follows: 87 normal regions, 57 regions 

with mild dysplasia, 26 regions with moderate dysplasia, 20 regions containing severe 

dysplasia, and 95 regions with cancer. 
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Development of a Classification Algorithm 

For each region, image features including average intensity, standard deviation, 

skewness, kurtosis, maximum value and coefficient of variation were calculated from 

post-incubation fluorescence images.  Additionally, the length of the edge line detected 

using the Matlab edge function was calculated for each region using fluorescence images. 

These image features were used to train and test a classification algorithm on the full set 

of 286 regions; a histologic diagnosis of normal epithelium was considered normal, and 

mild, moderate, and severe dysplasia and cancer were considered neoplastic.  Table 2 

indicates the classification performance of the top six highest performing single features, 

ranked by area under the receiver operator characteristic curve (AUC).  Of the six top-

performing features, four are calculated from the EGF-Alexa 647 image and two are 

calculated from the 2-NBDG image.  Normalized mean intensity of the EGF-Alexa 647 

signal was the highest performing single feature with an AUC of 0.80.   

Figure 5 shows scatter plots of two selected features of interest, with the y-axis 

indicating feature value and the x-axis sorted by pathologic diagnosis.  Each of the 286 

points in the graph indicates a single region of interest.  Figure 5A shows normalized 

mean intensity of the 2-NBDG signal and Figure 5B shows normalized mean intensity of 

the EGF-Alexa 647 signal. Regions are grouped by pathologic diagnosis with green 

indicating normal epithelium, blue indicating mild dysplasia, pink indicating moderate 

dysplasia, red indicating severe dysplasia, and black indicating cancer.  Horizontal black 

lines indicate the mean feature value and vertical black lines indicate plus and minus one 

standard deviation for each pathologic category.  Figure 5 indicates that the 2-NBDG 
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signal intensity, and therefore metabolic activity, is elevated earlier in the progression of 

neoplasia, while EGFR expression is elevated later in this progression. 

Ultimately, three unbiased features were selected for use in the classification 

algorithm: (1) normalized mean intensity of the EGF-Alexa 647 signal, (2) coefficient of 

variation from the 2-NBDG signal, and (3) length of the detected edge based on 2-

NBDG.  The features were selected sequentially in that order for improving performance 

of the algorithm; normalized mean intensity of the EGF-Alexa 647 signal was the single 

best feature, and each of the subsequent features improved algorithm performance.  

Addition of a fourth feature did not significantly improve performance.  Table 2 also 

indicates the AUC of the three-feature algorithm developed from this combination of 

quantitative features. 

Figure 6A shows the resulting scatter plot of posterior probabilities grouped by 

histopathological diagnosis.  The horizontal line at 0.41 indicates the cut-off point that 

gives the best sensitivity and specificity of the algorithm.  Any posterior probability 

above this value would be considered neoplastic by the classification algorithm, and any 

posterior probability below this value would be considered normal.  This cut-off gives a 

sensitivity of 73% and a specificity of 77%.  Figure 6B shows the receiver operator 

characteristic curve of the algorithm.  The area under the curve (AUC) is 0.83, and the 

cut-off point yielding the highest sensitivity and specificity is marked with a blue circle.   

Figure 7A displays the 50 x 50 pixel grid that was used to divide the image from a 

representative sample into new regions.  While the originally evaluated regions as shown 

in Figure 4 were selected to contain only one diagnostic category and were oriented 

parallel to the pathology slices, the new evaluation grid is oriented parallel to the edges of 
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the image and each region may contain multiple diagnostic categories.  Figure 7B 

indicates the regions that were identified as having the highest posterior probability.  

Black stars indicate a posterior probability between 0.80-1.00 and gray stars indicate a 

posterior probability between 0.60-0.79.  In this example, two adjacent regions have the 

highest level of posterior probability.  According to the histopathology map, one of these 

regions contains mostly severe dysplasia, and the other contains mostly moderate 

dysplasia.  Two regions with the second highest level of posterior probability were also 

identified, and these are also adjacent to one of the highest-level regions.  Of these two 

regions, marked with a gray star, one contains mostly severe dysplasia and the other 

contains moderate dysplasia throughout.  No part of any of these identified regions in this 

specimen contains normal epithelium. 

This method was applied to all nine specimens; results are shown in Table 3.  Out 

of the nine specimens, seven specimens contained at least one region that had a posterior 

probability between 0.80-1.00, for a total of 85 regions.  Of these identified regions, 99% 

(84/85) contained >50% neoplasia. The remaining two specimens that did not have any 

regions identified within the highest-level category (#3 and #7) had multiple regions with 

posterior probabilities between 0.60-0.79.  Among the 9 specimens, a total of 85 different 

regions were identified as having a posterior probability from 0.60-0.79.  Of these 

regions, 95% (81/85) contained >50% neoplasia.   

Figure 8 shows for all the clinical samples the regions determined to have the 

highest posterior probability overlaid onto the corresponding histopathology maps. The 

black stars indicate the regions with posterior probability from 0.80-1.00, and the gray 

stars indicate the regions with posterior probability from 0.60-0.79.  A few of the regions 
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identified do not have corresponding gold standard histopathology information for the 

entire area and so were not included in the analysis shown in Table 3, but are shown in 

Figure 8. 

This strategy has excellent agreement with histopathology, and while it does not 

identify all abnormal tissue, it identifies areas with the highest likelihood of disease in all 

samples. 
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Discussion 

The optical imaging approach described in this study uses molecularly-targeted 

contrast agents to simultaneously assess two clinically relevant biomarkers in oral cancer: 

EGFR expression and metabolic activity.  The benefit of this approach is that expression 

levels of multiple biomarkers can be assessed quantitatively over a large field of view and 

with high spatial resolution; this type of information cannot be obtained through the 

current practice of IHC.  In this study, we used ex vivo imaging to evaluate whether 

topical application of multiple imaging agents could be potentially useful to predict the 

presence of neoplastic disease in the oral cavity.  A potential advantage of studying 

optical imaging approaches in freshly resected human tissue as an alternative to in vivo 

assessments in animal models is that the pattern of biomarker expression and the 

potential barriers to topical administration of imaging agents will likely be more 

physiologically relevant to the intended final goal of in vivo imaging of oral cancer 

patients [29].   

The optical molecular imaging approach demonstrated here ex vivo can be 

translated to in vivo oral cavity imaging.  The imaging system used in this study has been 

used to measure oral autofluorescence in vivo in many patients [30-32].  The targeted 

imaging agents can be formulated into a mouthwash solution or topical gel that could be 

topically applied to the oral mucosal surface, potentially decreasing the dose required in 

comparison with intravenous injection and reducing consequent systemic toxicity 

concerns.  Imaging could be performed shortly after application. Steps remaining before 

this technique can be translated to in vivo use in patients include safety testing to support 

an Investigational New Drug application for topical use of the imaging agents.  This 
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would allow clinical testing to assess the utility of the technique in patients with oral 

dysplasia or cancer.  This approach could also be extended to include other biomarkers, if 

spectrally distinct imaging agents that specifically target the biomarker can be developed.   

Analysis of fluorescence images in Figure 6 revealed features that differ in images 

of normal and neoplastic tissue.  While using the classification algorithm to simply 

classify a site as either normal or neoplastic resulted in sensitivity of 73% and a 

specificity of 77%, the plot of posterior probability versus diagnosis suggests a more 

useful way in which to apply the image features.  When these image features were used 

to identify regions with the highest likelihood of disease, the selected areas contained 

histologically diagnosed neoplasia 99% of the time.  The advantages of the quantitative 

features used for classification are that they provide objective metrics that reflect the 

amount of molecular target present and the heterogeneity of target expression.  These 

features can be calculated rapidly and easily.  The objective assessment to accurately 

predict the presence of neoplasia has many clinical applications, including initial 

detection and diagnosis, selection of an appropriate biopsy site, monitoring treatment 

response, and monitoring patients for recurrence.  This application is consistent with 

research recommended in 2010 in the Journal of the American Dental Association, which 

called for research projects to “identify factors that would increase clinicians’ confidence 

and competence in identification and management of potentially malignant lesions or 

early-stage malignancies, including the provision of surgical biopsies” [33].  

Another potential use of a targeted optical imaging strategy could be in 

understanding the role of heterogeneity of biomarker expression in selection of therapy 

and predicting treatment response. Quantitative IHC studies reveal that the factor of 
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overexpression of EGFR ranges from approximately 1.7- to 3-fold increase in dysplasia 

and cancer [13,14,34].  A similar level of overexpression has also been observed in 

targeted molecular imaging studies, and the results of this study are comparable [22,35].  

EGFR expression is already a target in the FDA-approved monoclonal antibody therapy 

cetuximab, which is often used to treat recurrence of oral cancer.  Other EGFR inhibitors 

(gefitinib, erlotinib, panatumumab, and lapatinib) have been approved for cancer 

treatment in other organ sites and are currently in clinical trials for head and neck cancer 

indications [36].  While in vitro data suggest a link between EGFR expression level and 

cytotoxicity of EGFR-targeted therapy, no definitive clinical correlation has yet been 

found [37-39].  As seen in the fluorescence images and IHC data shown here, EGFR 

expression is heterogeneous throughout a lesion.  The ability to assess biomarker 

expression in vivo over a large sample using optical molecular imaging may elucidate the 

causes of this discrepancy and aid in the selection of patients who could benefit from 

EGFR-targeted therapy.  For patients who respond, the benefits of EGFR-targeted 

therapy include the prevention of nodal metastases by blocking EGFR and potentially 

improved survival when combined with standard chemotherapy [40,41].  As new EGFR-

targeted therapies (such as nimotuzumab, zalutulumab, bevacizumab, and vandetanib) are 

developed and tested clinically for head and neck cancer indications, predicting which 

patients may benefit from a particular therapy will also aid in FDA approval [42,43].   

EGFR expression also has applications in other clinical settings.  EGFR may help 

distinguish between leukoplakia with or without dysplasia since oral leukoplakia with 

underlying dysplasia has increased expression of EGFR, which may be useful as an early 

marker of malignancy [15].  Moreover, non-malignant leukoplakias were shown not to 
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have elevated EGFR expression [44].  Another clinical application of EGFR expression is 

in the identification of patients who would benefit from hyperfractionated accelerated 

radiotherapy [45,46].  In pretreatment biopsies assessed for EGFR, patients with high 

EGFR expression had improved survival with hyperfractionated accelerated radiotherapy 

compared to a standard radiotherapy schedule.  Identifying EGFR expression across the 

entire surface of the lesion may improve identification of patients who could benefit from 

this type of treatment.  Finally, quantification of EGFR expression is difficult with 

current IHC methods, which may be one reason for conflicting findings in studies 

examining the prognostic value of EGFR in head and neck cancer [8].  Quantitative 

evaluation of optical molecular imaging of EGFR may help standardize measurement of 

EGFR expression level. 

Metabolic activity as indicated by FDG-PET is currently used extensively in head 

and neck cancer for tumor staging, monitoring treatment response, and detecting residual 

or recurrent disease [47,48].  FDG-PET has a high sensitivity and moderate specificity 

for detecting recurrent disease at the primary tumor site, but due to its inherently low 

spatial resolution, it is unable to detect lesions smaller than approximately 1 cm in size 

[48].  FDG-PET is significantly better than clinical assessment and conventional imaging 

to monitor treatment response and has also been used as a marker of erlotinib response 

[49,50].  Monitoring metabolic activity with FDG-PET can also identify residual disease 

and detect recurrence [48,49,51-53].  Although monitoring metabolic activity optically 

with 2-NBDG cannot accomplish any of the deep tissue applications of FDG-PET such 

as imaging of nodal metastases, it can be used to assess metabolic activity in the 

epithelium as shown in this study, a strategy which may be useful to detect residual or 
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recurrent disease at the primary tumor site.  The advantage of using 2-NBDG over FDG-

PET is that optical imaging provides superior spatial and temporal resolution, does not 

expose the patient to ionizing radiation, and is far less expensive than PET imaging 

equipment and maintenance of cyclotron facilities.  

Optical molecular imaging as applied in this study has some limitations, however.  

Though topical application of imaging agents may reduce dose and toxicity concerns, the 

agents are delivered only in the epithelium, preventing detection of submucosal disease.  

Another concern may arise from the idea of applying the epidermal growth factor, a 

mitogen, to a potentially neoplastic area.  However, studies have demonstrated that pre-

treatment of oral cancer lesions with EGF actually improves the cytotoxicity of cisplatin, 

the most commonly used chemotherapy for head and neck cancer [54,55].   Inflammation 

in the oral cavity is a common confounder for detection of neoplasia, and inflammatory 

cells may also take up 2-NBDG, resulting in potential false positives from high metabolic 

activity of lymphocytes present in oral tissue due to benign conditions.  However, 

targeting glucose transporters is still very clinically relevant as evidenced by the 

widespread use of FDG-PET imaging.  Having an orthogonal target such as EGFR is 

useful to prevent the occasional false positive from 2-NBDG signal due to inflammation, 

since EGFR is not elevated as a result of inflammation.  Finally, not all patients will have 

overexpression of EGFR, so that low fluorescence signal after application of EGF-Alexa 

647 may not rule out the possibility of the presence of neoplasia.   

Being able to obtain information from both agents in combination may help avoid 

the pitfalls of each agent alone.  As seen from the images in Figure 1 and the quantitative 

results in Figure 5, while the general spatial pattern of staining with both agents appears 
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similar with elevation across regions of neoplasia, there are important differences.  2-

NBDG signal is most elevated in regions with histologic diagnosis of dysplasia and 

EGFR signal is most elevated in regions with histologic diagnosis of cancer.  The 

changes in 2-NBDG signal over progression of disease is related first to rapid growth and 

metabolism of cells during dysplasia, followed by necrosis and ulceration that occurs 

once a large tumor develops.  EGFR expression increases over disease progression, and is 

at its highest once cancer develops.  2-NBDG and EGFR therefore provide 

complementary information. 

Biomarkers have been studied for their potential use in detecting neoplasia, 

staging, selecting and monitoring therapy, detection of recurrence, and prognostic value, 

but the full picture of biomarker expression across an entire lesion is necessary to make 

accurate conclusions about the roles these biomarkers play in the disease process.  

Optical molecular imaging as demonstrated in this study of EGFR expression and 

metabolic activity in oral mucosa can reveal biomarker heterogeneity across a lesion and 

may serve as a research tool to understand cancer biology, develop new targeted 

therapies, or aid in the clinical management of cancer patients.  With the proper imaging 

agents, this approach could be extended to monitor additional biomarkers in other types 

of epithelial neoplasia as well, and may eventually result in improved patient survival by 

allowing clinical care to be tailored to each patient’s biomarker expression profile.   
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Figure Captions: 

Figure 1.  Images from two representative specimens.  From left to right, images include 

a white light photograph; fluorescence after incubation with EGF-Alexa 647 to show 

EGFR expression; fluorescence after incubation with 2-NBDG to show metabolic 

activity; and the corresponding histopathology map.  The specimen shown in the top row 

had a worst diagnosis of moderate dysplasia; the specimen in the bottom row had a worst 

diagnosis of cancer. Scale bars are 1 cm.  The color scale on the bottom shows the key for 

the histopathology maps. 

 

Figure 2.  A representative set of images to demonstrate the correlation between EGF-

Alexa 647 fluorescence intensity and IHC for EGFR.  (A) Widefield fluorescence image 

of specimen following application of EGF-Alexa 647 with tissue slice selected for IHC 

outlined in white, (B) Histopathology map of specimen. (C) IHC staining of selected slice 

as graded by a pathologist is indicated on a scale of 0 to 3 along with the original IHC 

image.  The fluorescence image from the corresponding portion of tissue is also shown 

and fluorescence intensity is graphed across the slice on a scale normalized to the 

maximum value.  The original H&E slide and corresponding histologic diagnosis are also 

shown for reference. 

 

Figure 3.  Intensity of IHC staining and corresponding fluorescence intensity graphs for 

two additional specimens with two slices shown from each. 

 
Figure 4.  Representative example of how 50 x 50 pixel regions of interest were selected.  

This sample contains 4 normal regions, 3 regions of mild dysplasia, 9 regions of 

moderate dysplasia, and 3 regions of severe dysplasia.  Quantitative features were 

calculated from each region of interest.  Scale bar is 1 cm. 

 
Figure 5.  Scatter plots showing the distribution of feature values within the set of 286 

regions, each point represents a single region.  Regions are grouped by pathologic 

diagnosis with green indicating normal epithelium, blue indicating mild dysplasia, pink 

indicating moderate dysplasia, red indicating severe dysplasia, and black indicating 

cancer.  Horizontal black lines indicate the mean feature value and vertical black lines 

indicate plus and minus one standard deviation for each pathologic category.  The scatter 

plots show the following features: (A) Mean intensity of the 2-NBDG signal, and (B) 

Mean intensity of the EGF-Alexa 647 signal. 

 
Figure 6.  (A) Scatter plot of posterior probability by diagnosis using the algorithm. The 

horizontal line indicates the optimum cut-off at 0.41.  The color key is the same as in 

Figure 5.  (B) Receiver operator characteristic curve using a three feature classification 

algorithm.  The operating point at the optimum cut-off is shown with a blue circle and 

results in a sensitivity of 73%, a specificity of 77%, and an area under the curve of 0.83. 

 
Figure 7.  (A) Superimposed grid to divide each specimen into a new set of regions of 

interest.  Using the previously developed classification algorithm, posterior probabilities 
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were calculated for each of these new regions of interest. (B) Based on two levels of 

posterior probability, regions identified as most likely to contain neoplasia were marked 

with black (posterior probability: 0.80-1.00) or gray (posterior probability: 0.60-0.79) 

stars.  Scale bars are 1 cm. 

Figure 8.  All clinical specimens; regions identified by the algorithm as most likely to 

contain neoplasia are marked by stars.  Black stars indicate the highest level of posterior 

probability (0.80-1.00) and gray stars indicate the next highest level of posterior 

probability (0.60-0.79). Regions predicted to contain neoplasia have excellent agreement 

with the gold standard of histopathology.  Scale bars are 1 cm. 
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Table Captions: 
 
Table 1.  Number of analyzed regions by patient and diagnosis  
 
Table 2.  Performance of single features and combination of features in a classification 

algorithm  

 

Table 3.  Use of posterior probability to identify regions with the highest likelihood of 

disease  
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Table 1.  Number of analyzed regions by patient and diagnosis  
 

Specimen 

# 

Normal Mild 

Dysplasia 

Moderate 

Dysplasia 

Severe 

Dysplasia 

Cancer Total 

1 4 3 9 3 0 19 

2 18 1 1 0 12 32 

3 14 3 0 15 4 36 

4 12 33 8 0 0 53 

5 9 6 3 2 17 37 

6 9 3 3 0 23 38 

7 3 2 1 0 2 8 

8 6 1 1 0 23 31 

9 12 5 0 0 15 32 

Total 87 57 26 20 96 286 
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Table 2.  Performance of single features and combination of features in a classification 

algorithm  
 

Feature AUC of Feature 

EGF Normalized Mean Intensity 0.80 

EGF Entropy 0.76 

EGF Standard Deviation 0.73 

2-NBDG Normalized Mean Intensity 0.70 

EGF Maximum Value 0.70 

2-NBDG Maximum Value 0.68 

Three-feature Algorithm 0.83 
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Table 3.  Use of posterior probability to identify regions with the highest likelihood of 

disease  

 

 
Regions with Posterior 

Probability of 0.80-1.00 

Regions with Posterior 

Probability of 0.60-0.79 

Specimen 

# 

Percent of regions containing >50% 

neoplasia 

Percent of regions containing >50% 

neoplasia 

1 
100% 

(2/2) 

100% 

(2/2) 

2 
93% 

(13/14) 

80% 

(4/5) 

3 N/A 
50% 

(1/2) 

4 
100% 

(1/1) 

100% 

(15/15) 

5 
100% 

(25/25) 

80% 

(8/10) 

6 
100% 

(31/31) 

100% 

(8/8) 

7 N/A 
100% 

(3/3) 

8 
100% 

(11/11) 

100% 

(24/24) 

9 
100% 

(1/1) 

100% 

(16/16) 

Total 
99% 

(84/85) 

95% 

(81/85) 

 

 


